\(A=n^4-n^3-n^3+n^2+2n^2-2n\)
\(A=n^3\left(n-1\right)-n^2\left(n-1\right)+2n\left(n-1\right)\)
\(A=n\left(n-1\right)\left[n^2-n+2\right]\)
\(A=n\left(n-1\right)\left[n\left(n-1\right)+2\right]\)
Đặt \(n\left(n-1\right)=a\)
\(\Rightarrow A=a\left(a+2\right)=a^2+2a\)
- Nếu \(\left[{}\begin{matrix}n=0\\n=1\end{matrix}\right.\) \(\Rightarrow a=0\Rightarrow A=0\) là SCP
- Nếu \(n>1\Rightarrow n\left(n-1\right)>0\Rightarrow a>0\Rightarrow\left\{{}\begin{matrix}A=a^2+2a>a^2\\A=a^2+2a< a^2+2a+1=\left(a+1\right)^2\end{matrix}\right.\)
\(\Rightarrow a^2< A< \left(a+1\right)^2\Rightarrow A\) không chính phương
Vậy...