Đặt \(2n+1=k^2\left(k\in\text{ℕ}\right)\); \(3n+1=m^2\left(m\in\text{ℕ}\right)\)
\(\Rightarrow6n+3=3k^2;6n+2=2m^2\)
\(\Rightarrow3k^2-2m^2=6n+3-6n-2=1\)
\(\Leftrightarrow\left(\sqrt{3}k-\sqrt{2}m\right)\left(\sqrt{3}k+\sqrt{2}m\right)=1=1.1\)(Vì \(\sqrt{3}k+\sqrt{2}m\ge0\))
\(\Rightarrow\left\{{}\begin{matrix}\sqrt{3}k-\sqrt{2}m=1\\\sqrt{3}k+\sqrt{2}m=1\end{matrix}\right.\)\(\Rightarrow\left\{{}\begin{matrix}k=\dfrac{\sqrt{3}}{3}\\m=0\end{matrix}\right.\)(KTM)
Vậy không tồn tại số tự nhiên n thỏa mãn.