Tìm số hạng tổng quát của dãy số: \(\left\{{}\begin{matrix}u_1=2018;u_2=2019\\u_n.\left(u_{n-1}+u_{n+1}\right)=2.u_{n-1}.u_{n+1}\end{matrix}\right.\)
Tìm số hạng tổng quát của dãy số: \(\left\{{}\begin{matrix}u_1=2018;u_2=2019\\u_n.\left(u_{n-1}+u_{n+1}\right)=2u_{n-1}.u_{n+1}\end{matrix}\right.\)
Cho dãy số (Un): \(\left\{{}\begin{matrix}u_1=1,u_2=2\\u_{n+2}=-\sqrt{2}.u_{n+1}-u_n\end{matrix}\right.\). Hãy xác định số hạng tổng quát của dãy (Un)
Tìm số hạng tổng quát \(\left\{{}\begin{matrix}u_1=u_2=1\\u_n=2u_{n-2}+u_{n-1};n\ge3\end{matrix}\right.\)
Bài 1: Cho dãy (Un): \(\left\{{}\begin{matrix}U_1=1\\U_{n+1}=2U_n+3\end{matrix}\right.\)
a) Tìm: U5
b) Tìm số hạng tổng quát của dãy (Un)
Bài 2: Xét tính tăng, giảm
a) \(U_n=\dfrac{\sqrt{n+1}-\sqrt{n}}{n}\)
b) \(\left(U_n\right):\left\{{}\begin{matrix}U_n=3\\U_{n+1}=\sqrt{1+U_n^2}\end{matrix}\right.\)
Bài 3: Tìm a để (Un): \(U_n=\dfrac{an+2}{n+1}\) là dãy tăng
Bài 4: Xét tính bị chặn:
a) \(U_n=\dfrac{n^2+1}{2n^2-3}\)
b) \(U_n=\dfrac{n-1}{\sqrt{n^2+1}}\)
Bài 5: Cho dãy: \(\left\{{}\begin{matrix}U_1=\sqrt{2}\\U_n+1=\sqrt{U_n+2}\end{matrix}\right.\), (Un)
Chứng minh rằng: (U1) tăng, bị chặn trên bởi 2
Hãy viết 5 số hạng đầu của dãy số ( un) biết
(un) : \(\left\{{}\begin{matrix}u_1=15,u_2=9\\u_{n+2}=u_n-u_{n+1}\end{matrix}\right.\)
Cho \(\left(U_n\right):\left\{{}\begin{matrix}u_1=2019\\u_n=\dfrac{-2019}{n}.\left(u_1+u_2+...+u_{n-1}\right)\end{matrix}\right.\). Tính: \(A=2u_1+2^2u_2+...+2^{2019}u_{2019}\)
Tìm số hạng tổng quát của \(\left(u_n\right)\) biết \(\left(u_n\right):\left\{{}\begin{matrix}u_1=\dfrac{1}{2}\\u_{n+1}=u_n^2\end{matrix}\right.\).
Tìm số hạng tổng quát của dãy số cho bởi công thức truy hồi :
\(\left\{{}\begin{matrix}u_1=1\\u_{n+1}=\dfrac{n}{2\left(n+1\right)}.u_n+\dfrac{n+2}{n+1}\end{matrix}\right.\)