Cho dãy số \((u_n)\) được xác định : \(\left\{ \begin{array}{l} {u_1} = 2019\\ {u_n} = - \frac{{2019}}{n}({u_1} + {u_2} + ... + {u_{n - 1}}),n > 1 \end{array} \right.\) .Tính \(T = 2{u_1} + {2^2}{u_2} + ... + {2^{2019}}{u_{2019}}\)
Tìm số hạng tổng quát của dãy số: \(\left\{{}\begin{matrix}u_1=2018;u_2=2019\\u_n.\left(u_{n-1}+u_{n+1}\right)=2.u_{n-1}.u_{n+1}\end{matrix}\right.\)
Tìm số hạng tổng quát của dãy số: \(\left\{{}\begin{matrix}u_1=2018;u_2=2019\\u_n.\left(u_{n-1}+u_{n+1}\right)=2.u_{n-1}.u_{n+1}\end{matrix}\right.\)
Tìm số hạng tổng quát của dãy số: \(\left\{{}\begin{matrix}u_1=2018;u_2=2019\\u_n.\left(u_{n-1}+u_{n+1}\right)=2u_{n-1}.u_{n+1}\end{matrix}\right.\)
Cho dãy (un) \(\left\{{}\begin{matrix}u_1=\dfrac{1}{2}\\u_n=\dfrac{\sqrt{u_{n-1}^2+4u_{n-1}}+u_{n-1}}{2}\forall n\ge2\end{matrix}\right.\)
Tinh \(\lim\limits_{n\rightarrow+\infty}\left(\dfrac{1}{u_1^2}+\dfrac{1}{u_2^2}+...+\dfrac{1}{u_n^2}\right)\)
cho dãy số (Un) được xác định bởi \(\left\{{}\begin{matrix}u_1=2\\n\left(n^2-1\right)u_n=u_1+2u_2+3u_3+...+\left(n-1\right)u_{n-1}\end{matrix}\right.\)
tìm công thức tổng quát để tính Un
Tìm số hạng tổng quát của \(\left(u_n\right)\) biết \(\left(u_n\right):\left\{{}\begin{matrix}u_1=\dfrac{1}{2}\\u_{n+1}=u_n^2\end{matrix}\right.\).
Tìm số hạng tổng quát \(\left\{{}\begin{matrix}u_1=u_2=1\\u_n=2u_{n-2}+u_{n-1};n\ge3\end{matrix}\right.\)
Bài 1: Cho dãy (Un): \(\left\{{}\begin{matrix}U_1=1\\U_{n+1}=2U_n+3\end{matrix}\right.\)
a) Tìm: U5
b) Tìm số hạng tổng quát của dãy (Un)
Bài 2: Xét tính tăng, giảm
a) \(U_n=\dfrac{\sqrt{n+1}-\sqrt{n}}{n}\)
b) \(\left(U_n\right):\left\{{}\begin{matrix}U_n=3\\U_{n+1}=\sqrt{1+U_n^2}\end{matrix}\right.\)
Bài 3: Tìm a để (Un): \(U_n=\dfrac{an+2}{n+1}\) là dãy tăng
Bài 4: Xét tính bị chặn:
a) \(U_n=\dfrac{n^2+1}{2n^2-3}\)
b) \(U_n=\dfrac{n-1}{\sqrt{n^2+1}}\)
Bài 5: Cho dãy: \(\left\{{}\begin{matrix}U_1=\sqrt{2}\\U_n+1=\sqrt{U_n+2}\end{matrix}\right.\), (Un)
Chứng minh rằng: (U1) tăng, bị chặn trên bởi 2