a) \(\dfrac{x}{y}=\dfrac{9}{7}\Rightarrow\dfrac{x}{9}=\dfrac{y}{7}\) (1)
\(\dfrac{y}{z}=\dfrac{7}{3}\Rightarrow\dfrac{z}{3}=\dfrac{y}{7}\) (2)
Từ (1) và (2) suy ra: \(\dfrac{x}{9}=\dfrac{y}{7}=\dfrac{z}{3}\)
Áp dụng tính chất dãy tỉ số bằng nhau, ta có:
\(\dfrac{x}{9}=\dfrac{y}{7}=\dfrac{z}{3}=\dfrac{x-y-z}{9-7-3}=\dfrac{-15}{-1}=15\)
\(\Rightarrow\left\{{}\begin{matrix}x=15.9\\y=15.7\\z=15.3\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=135\\y=105\\z=45\end{matrix}\right.\)
Vậy, x = 135, y = 105, z = 45
b, \(\dfrac{x}{-3}=\dfrac{y}{-8}\Leftrightarrow\dfrac{x^2}{9}=\dfrac{y^2}{64}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\dfrac{x^2}{9}=\dfrac{y^2}{64}=\dfrac{x^2-y^2}{9-64}=-\dfrac{44}{\dfrac{5}{-55}}=-\dfrac{44}{5}:\left(-55\right)=-\dfrac{44}{5}.-\dfrac{1}{55}=\dfrac{44}{275}=0,16\)
+) \(\dfrac{x^2}{9}=0,16\Rightarrow x^2=1,44\Rightarrow x=\pm1,2\)
+) \(\dfrac{y^2}{64}=0,16\Rightarrow y^2=10,24\Rightarrow y=\pm3,2\)
Vậy ...