Violympic toán 7

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Hoàng Đức Thịnh

Tìm số chưa biết

a)\(\dfrac{x}{y}=\dfrac{9}{7};\dfrac{y}{z}=\dfrac{7}{3};x=y-z=-15\)

b)\(\dfrac{x}{-3}=\dfrac{y}{-8};x^2-y^2=-\dfrac{44}{5}\)

Trần Minh Hoàng
18 tháng 10 2017 lúc 15:18

a) \(\dfrac{x}{y}=\dfrac{9}{7}\Rightarrow\dfrac{x}{9}=\dfrac{y}{7}\) (1)

\(\dfrac{y}{z}=\dfrac{7}{3}\Rightarrow\dfrac{z}{3}=\dfrac{y}{7}\) (2)

Từ (1) và (2) suy ra: \(\dfrac{x}{9}=\dfrac{y}{7}=\dfrac{z}{3}\)

Áp dụng tính chất dãy tỉ số bằng nhau, ta có:

\(\dfrac{x}{9}=\dfrac{y}{7}=\dfrac{z}{3}=\dfrac{x-y-z}{9-7-3}=\dfrac{-15}{-1}=15\)

\(\Rightarrow\left\{{}\begin{matrix}x=15.9\\y=15.7\\z=15.3\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=135\\y=105\\z=45\end{matrix}\right.\)

Vậy, x = 135, y = 105, z = 45

Trần Thị Hương
18 tháng 10 2017 lúc 15:24

b, \(\dfrac{x}{-3}=\dfrac{y}{-8}\Leftrightarrow\dfrac{x^2}{9}=\dfrac{y^2}{64}\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có:

\(\dfrac{x^2}{9}=\dfrac{y^2}{64}=\dfrac{x^2-y^2}{9-64}=-\dfrac{44}{\dfrac{5}{-55}}=-\dfrac{44}{5}:\left(-55\right)=-\dfrac{44}{5}.-\dfrac{1}{55}=\dfrac{44}{275}=0,16\)

+) \(\dfrac{x^2}{9}=0,16\Rightarrow x^2=1,44\Rightarrow x=\pm1,2\)

+) \(\dfrac{y^2}{64}=0,16\Rightarrow y^2=10,24\Rightarrow y=\pm3,2\)

Vậy ...


Các câu hỏi tương tự
Kim Ngưu dễ thương
Xem chi tiết
Nguyễn Thị Trà My
Xem chi tiết
Trịnh Diệu Linh
Xem chi tiết
キャサリン
Xem chi tiết
Wanna One
Xem chi tiết
Thuy Khuat
Xem chi tiết
Tuan Dang
Xem chi tiết
Jin Yi Hae
Xem chi tiết
crewmate
Xem chi tiết