Tìm các số x,y,z biết:
a.9x=5y=15z và -x+y-z=11
b.\(\dfrac{3}{7}x=\dfrac{8}{13}y=\dfrac{6}{19}z\) và 2x-y-z=-6
c.\(\dfrac{x}{8}=\dfrac{y}{3}=\dfrac{z}{10}\) và xy+yz+zx=1206
d.\(\dfrac{x}{4}=\dfrac{2y}{5}=\dfrac{5z}{6}\)và x2-3y2+2z2=325
c.\(\dfrac{18x-27y}{100}=\dfrac{27y-24z}{101}=\dfrac{24z-18x}{102}\) và x+y+z=116
a)
Ta có: \(9x=5y=15z\Rightarrow\dfrac{9x}{45}=\dfrac{5y}{45}=\dfrac{15z}{45}\Rightarrow\dfrac{x}{5}=\dfrac{y}{9}=\dfrac{z}{3}\Rightarrow\dfrac{-x}{-5}=\dfrac{y}{9}=\dfrac{z}{3}_{\left(1\right)}\)
và \(-x+y-z=11_{\left(2\right)}.\)
Từ \(_{\left(1\right)}\) và \(_{\left(2\right)}\), kết hợp tính chất dãy tỉ só bằng nhau có:
\(\dfrac{-x}{-5}=\dfrac{y}{9}=\dfrac{z}{3}=\dfrac{-x+y-z}{-5+9-3}=\dfrac{11}{1}=11.\)
Từ đó: \(\left\{{}\begin{matrix}\dfrac{-x}{-5}=11\Rightarrow-x=-55\Rightarrow x=55.\\\dfrac{y}{9}=11\Rightarrow y=99.\\\dfrac{z}{3}=11\Rightarrow z=33.\end{matrix}\right.\)
Vậy.....
b); c); d); e) làm tương tự.