Ta có: \(3x^3+10x^2-5+n⋮3x+1\)
\(\Leftrightarrow3x^3+x^2+9x^2+3x-3x-1-4+n⋮3x+1\)
\(\Leftrightarrow x^2\left(3x+1\right)+3x\left(3x+1\right)-\left(3x+1\right)-\left(4-n\right)⋮3x+1\)
\(\Leftrightarrow\left(3x+1\right)\left(x^2+3x-1\right)-\left(4-n\right)⋮3x+1\)
mà \(\left(3x+1\right)\left(x^2+3x-1\right)⋮3x+1\)
nên \(-\left(4-n\right)⋮3x+1\)
\(\Leftrightarrow-\left(4-n\right)=0\)
\(\Leftrightarrow4-n=0\)
\(\Leftrightarrow n=4\)
Vậy: Để đa thức \(3x^3+10x^2-5+n\) chia hết cho đa thức 3x+1 thì n=4