Đặt \(-x^2+2x+1=t\)
Xét \(f\left(x\right)=-x^2+2x+1\) ta có:
\(a=-1< 0\) ; \(f\left(-\frac{b}{2a}\right)=f\left(1\right)=2\Rightarrow\) để \(f\left(x\right)=t\) có 2 nghiệm pb \(\Leftrightarrow t< 2\)
Phương trình ban đầu trở thành:
\(f\left(t\right)=-t^2+2t=m\) (1)
Để pt đã cho có 4 nghiệm pb \(\Leftrightarrow\left(1\right)\) có 2 nghiệm pb \(t< 2\)
Xét \(f\left(t\right)\) trên \(\left(-\infty;2\right)\)
\(a=-1< 0\) ; \(f\left(-\frac{b}{2a}\right)=f\left(1\right)=1\); \(f\left(2\right)=0\)
\(\Rightarrow\) Để (1) có 2 nghiệm \(t< 2\) \(\Leftrightarrow0\le m< 1\)