- Với \(x\ge-1\Rightarrow\left\{{}\begin{matrix}-mx+y=3\\x+y=1\end{matrix}\right.\) \(\Rightarrow\left(m+1\right)x=-2\)
\(m\ne-1\Rightarrow x=-\frac{2}{m+1}\ge-1\Rightarrow\frac{2}{m+1}-1\ge0\Rightarrow\frac{1-m}{m+1}\ge0\Rightarrow-1< m\le1\)
- Với \(x< -1\Rightarrow\left\{{}\begin{matrix}-mx+y=3\\-x+y=3\end{matrix}\right.\) \(\Rightarrow\left(m-1\right)x=0\)
Phương trình luôn luôn vô nghiệm hoặc vô số nghiệm
Vậy để hệ có nghiệm duy nhất thì \(-1< m\le1\)