Bài 2: Giới hạn của hàm số

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Crackinh

Tìm \(\lim\limits_{x\rightarrow0}\dfrac{\sqrt{\left(2x+1\right)\left(3x+1\right)\left(4x+1\right)}-1}{x}\)

Trần Minh Hoàng
12 tháng 3 2021 lúc 16:53

\(\lim\limits_{x\rightarrow0}\dfrac{\sqrt{\left(2x+1\right)\left(3x+1\right)\left(4x+1\right)}-1}{x}=\lim\limits_{x\rightarrow0}\dfrac{24x^2+26x+9}{\sqrt{\left(2x+1\right)\left(3x+1\right)\left(4x+1\right)}+1}=\dfrac{9}{1+1}=\dfrac{9}{2}\)

Lê Ng Hải Anh
12 tháng 3 2021 lúc 16:57

Ta có: \(\lim\limits_{x\rightarrow0}\dfrac{\sqrt{\left(2x+1\right)\left(3x+1\right)\left(4x+1\right)}-1}{x}\) \(=\lim\limits_{x\rightarrow0}\dfrac{\left(2x+1\right)\left(3x+1\right)\left(4x+1\right)-1}{x\left(\sqrt{\left(2x+1\right)\left(3x+1\right)\left(4x+1\right)}+1\right)}\)

\(=\lim\limits_{x\rightarrow0}\dfrac{x\left(24x^2+26x+9\right)}{x\left(\sqrt{\left(2x+1\right)\left(3x+1\right)\left(4x+1\right)}+1\right)}\)

\(=\lim\limits_{x\rightarrow0}\dfrac{24x^2+26x+9}{\sqrt{\left(2x+1\right)\left(3x+1\right)\left(4x+1\right)}+1}\)

\(=\dfrac{9}{2}\)

 

 


Các câu hỏi tương tự
James Pham
Xem chi tiết
dung doan
Xem chi tiết
B.Trâm
Xem chi tiết
B.Trâm
Xem chi tiết
nguyen thi khanh nguyen
Xem chi tiết
camcon
Xem chi tiết
lu nguyễn
Xem chi tiết
Trần Phương Thảo
Xem chi tiết
Ngọc Ánh Nguyễn Thị
Xem chi tiết