Bài 2: Giới hạn của hàm số

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Ngọc Ánh Nguyễn Thị

1, \(\lim\limits_{x\rightarrow1}\frac{2x^2-3x+1}{x^3-x^2-x+1}\)

2, \(\lim\limits_{x\rightarrow2}\frac{x-\sqrt{x+2}}{\sqrt{4x+1}-3}\)

3, \(\lim\limits_{x\rightarrow0}\frac{1-\sqrt[3]{x-1}}{x}\)

4, \(\lim\limits_{x\rightarrow-\infty}\frac{x^2-5x+1}{x^2-2}\)

5, \(\lim\limits_{x\rightarrow+\infty}\frac{2x^2-4}{x^3+3x^2-9}\)

6, \(\lim\limits_{x\rightarrow2^-}\frac{2x-1}{x-2}\)

7, \(\lim\limits_{x\rightarrow3^+}\frac{8+x-x^2}{x-3}\)

8, \(\lim\limits_{x\rightarrow-\infty}\left(8+4x-x^3\right)\)

9, \(\lim\limits_{x\rightarrow-1}\frac{\sqrt[3]{x}+1}{\sqrt{x^2+3}-2}\)

10, \(\lim\limits_{x\rightarrow-\infty}\frac{\left(2x^2+1\right)^2\left(5x+3\right)}{\left(2x^3-1\right)\left(x+1\right)^2}\)

11, \(\lim\limits_{x\rightarrow-\infty}\frac{\sqrt{x^2+2x}}{x+3}\)

12, \(\lim\limits_{x\rightarrow1}\frac{\sqrt{5-x^3}-\sqrt[3]{x^2+7}}{x^2-1}\)

13, \(\lim\limits_{x\rightarrow0}\frac{\sqrt[3]{x+1}+\sqrt{x+4}-3}{x}\)

14, \(\lim\limits_{x\rightarrow0}\frac{\left(x^2+2020\right)\sqrt{1+3x}-2020}{x}\)

15, \(\lim\limits_{x\rightarrow+\infty}\left(2x-\sqrt{4x^2-3}\right)\)

16, \(\lim\limits_{x\rightarrow a}\frac{x^2-\left(a+1\right)x+a}{x^3-a^3}\)

17, \(\lim\limits_{x\rightarrow1}\frac{x^n-nx+n-1}{\left(x-1\right)^2}\)

18, \(f\left(x\right)=\left\{{}\begin{matrix}\frac{x^2-2x}{8-x^3}\\\frac{x^4-16}{x-2}\end{matrix}\right.\) khi x>2,khi x<2 tại x=2

Akai Haruma
12 tháng 3 2020 lúc 0:06

Bài 2:

\(\lim\limits_{x\to 2}\frac{x-\sqrt{x+2}}{\sqrt{4x+1}-3}=\lim\limits_{x\to 2}\frac{x^2-x-2}{(x+\sqrt{x+2}).\frac{4x+1-9}{\sqrt{4x+1}+3}}=\lim\limits_{x\to 2}\frac{(x-2)(x+1)(\sqrt{4x+1}+3)}{(x+\sqrt{x+2}).4(x-2)}=\lim\limits_{x\to 2}\frac{(x+1)(\sqrt{4x+1}+3)}{4(x+\sqrt{x+2})}=\frac{9}{8}\)

Bài 3:

\(\lim\limits_{x\to 0-}\frac{1-\sqrt[3]{x-1}}{x}=-\infty \)

\(\lim\limits_{x\to 0+}\frac{1-\sqrt[3]{x-1}}{x}=+\infty \)

Bài 4:

\(\lim\limits_{x\to -\infty}\frac{x^2-5x+1}{x^2-2}=\lim\limits_{x\to -\infty}\frac{1-\frac{5}{x}+\frac{1}{x^2}}{1-\frac{2}{x^2}}=1\)

Bài 5:

\(\lim\limits_{x\to +\infty}\frac{2x^2-4}{x^3+3x^2-9}=\lim\limits_{x\to +\infty}\frac{\frac{2}{x}-\frac{4}{x^3}}{1+\frac{3}{x}-\frac{9}{x^3}}=0\)

Khách vãng lai đã xóa
Akai Haruma
12 tháng 3 2020 lúc 0:21

Bài 6:

\(\lim\limits_{x\to 2- }\frac{2x-1}{x-2}=\lim\limits_{x\to 2-}\frac{2(x-2)+3}{x-2}=\lim\limits_{x\to 2-}\left(2+\frac{3}{x-2}\right)=-\infty \)

Bài 7:

\(\lim\limits _{x\to 3+ }\frac{8+x-x^2}{x-3}=\lim\limits _{x\to 3+}\frac{1}{x-3}.\lim\limits _{x\to 3+}(8+x-x^2)=2(+\infty)=+\infty \)

Bài 8:

\(\lim\limits _{x\to -\infty}(8+4x-x^3)=\lim\limits _{x\to -\infty}(-x^3)=+\infty \)

Bài 9:

\(\lim\limits _{x\to -1}\frac{\sqrt[3]{x}+1}{\sqrt{x^2+3}-2}=\lim\limits _{x\to -1}\frac{x+1}{\sqrt[3]{x^2}-\sqrt[3]{x}+1}.\frac{\sqrt{x^2+3}+2}{x^2+3-4}=\lim\limits _{x\to -1}\frac{x+1}{\sqrt[3]{x^2}-\sqrt[3]{x}+1}.\frac{\sqrt{x^2+3}+2}{(x-1)(x+1)}\)

\(\lim\limits _{x\to -1}\frac{\sqrt{x^2+3}+2}{(\sqrt[3]{x^2}-\sqrt[3]{x}+1)(x-1)}=\frac{-2}{3}\)

Khách vãng lai đã xóa
Akai Haruma
12 tháng 3 2020 lúc 0:29

Bài 1:

\(\lim\limits_{x\to1+}\frac{2x^2-3x+1}{x^3-x^2-x+1}=\lim\limits_{x\to1+}\frac{\left(x-1\right)\left(2x-1\right)}{\left(x+1\right)\left(x-1\right)^2}=\lim\limits_{x\to1+}\frac{2x-1}{x^2-1}\)

\(\lim\limits_{x\to 1+}\frac{1}{x^2-1}.\lim\limits_{x\to 1+}(2x-1)=1.(+\infty)=+\infty \)

Tương tự \(\lim\limits_{x\to 1-} \frac{2x^2-3x+1}{x^3-x^2-x+1}=-\infty \)

Khách vãng lai đã xóa
Akai Haruma
12 tháng 3 2020 lúc 0:36

Bài 10:

\(\lim\limits_{x\to -\infty}\frac{(2x^2+1)^2(5x+3)}{(2x^3-1)(x+1)^2}=\lim\limits_{x\to -\infty}\frac{(\frac{2x^2+1}{x^2})^2.\frac{5x+3}{x}}{\frac{2x^3-1}{x^3}.(\frac{x+1}{x})^2}=\lim\limits_{x\to -\infty}\frac{(2+\frac{1}{x^2})^2(5+\frac{3}{x})}{(2-\frac{1}{x^3})(1+\frac{1}{x})^2}=\frac{2^2.5}{2.1}=10\)

Khách vãng lai đã xóa
Akai Haruma
12 tháng 3 2020 lúc 15:26

Nốt nhé hôm qua mình buồn ngủ nên không làm tiếp được

Bài 11:

\(\lim\limits_{x\to -\infty}\frac{\sqrt{x^2+2x}}{x+3}=\lim\limits_{x\to -\infty}\frac{\frac{\sqrt{x^2+2x}}{-x}}{\frac{x+3}{-x}}\)\(=\lim\limits_{x\to -\infty}\frac{\sqrt{1+\frac{2}{x}}}{-1+\frac{-3}{x}}=\frac{1}{-1}=-1\)

Bài 12:

\(\lim\limits_{x\to 1}\frac{\sqrt{5-x^3}-\sqrt[3]{x^2+7}}{x^2-1}=\lim\limits_{x\to 1}\frac{(\sqrt{5-x^3}-2)-(\sqrt[3]{x^2+7}-2)}{(x-1)(x+1)}\)

\(=\lim\limits_{x\to 1}\frac{\frac{1-x^3}{\sqrt{5-x^3}+2}-\frac{x^2-1}{\sqrt[3]{(x^2+7)^2}+2\sqrt[3]{x^2+7}+4}}{(x-1)(x+1)}\)

\(=\lim\limits_{x\to 1}\frac{\frac{-(x^2+x+1)}{\sqrt{5-x^3}+2}-\frac{x+1}{\sqrt[3]{(x^2+7)^2}+2\sqrt[3]{x^2+7}+4}}{x+1}=\frac{-11}{24}\)

Bài 13:

\(\lim\limits _{x\to 0}\frac{\sqrt[3]{x+1}+\sqrt{x+4}-3}{x}=\lim\limits _{x\to 0}\frac{(\sqrt[3]{x+1}-1)+(\sqrt{x+4}-2)}{x}=\lim\limits _{x\to 0}\frac{\frac{x}{\sqrt[3]{(x+1)^2}+\sqrt[3]{x+1}+1}+\frac{x}{\sqrt{x+4}+2}}{x}\)

\(\lim\limits _{x\to 0}[\frac{1}{\sqrt[3]{(x+1)^2}+\sqrt[3]{x+1}+1}+\frac{1}{\sqrt{x+4}+2}]=\frac{7}{12}\)

Bài 14:

\(\lim\limits_{x\to 0}\frac{(x^2+2020)\sqrt{1+3x}-2020}{x}=\lim\limits_{x\to 0}\frac{x^2\sqrt{1+3x}+2020(\sqrt{1+3x}-1)}{x}\)

\(\lim\limits_{x\to 0}x\sqrt{1+3x}+2020\lim\limits_{x\to 0}\frac{3x}{(\sqrt{1+3x}+1)x}=\lim\limits_{x\to 0}x\sqrt{1+3x}+2020\lim\limits_{x\to 0}\frac{3}{\sqrt{1+3x}+1}\)

\(=0+2020.\frac{3}{2}=3030\)

Bài 15:

\(\lim\limits_{x\to +\infty}(2x-\sqrt{4x^2-3})=\lim\limits_{x\to +\infty}\frac{4x^2-(4x^2-3)}{2x+\sqrt{4x^2-3}}=\lim\limits_{x\to +\infty}\frac{3}{2x+\sqrt{4x^2-3}}=0\)

Khách vãng lai đã xóa
Akai Haruma
12 tháng 3 2020 lúc 16:04

Bài 16:

\(\lim\limits _{x\to a}\frac{x^2-(a+1)x+a}{x^3-a^3}=\lim\limits _{x\to a}\frac{(x-1)(x-a)}{(x^2+xa+a^2)(x-a)}=\lim\limits _{x\to a}\frac{x-1}{x^2+xa+a^2}\)

Nếu $a=0$ thì \(=\lim\limits _{x\to 0}\frac{x-1}{x^2}=\lim\limits _{x\to 0}\frac{1}{x^2}.\lim\limits _{x\to 0}(x-1)=+\infty (-1)=-\infty \)

Nếu $a\neq 0$ thì \(\lim\limits _{x\to a}\frac{x-1}{x^2+xa+a^2}=\frac{a-1}{3a^2}\)

Bài 17: Áp dụng công thức L'Hospital

\(\lim\limits _{x\to 1}\frac{x^n-nx+n-1}{(x-1)^2}=\lim\limits _{x\to 1}\frac{dx(x^n-nx+n-1)}{dx((x-1)^2}=\lim\limits _{x\to 1}\frac{nx^{n-1}-n}{2x-2}\)

\(=\lim\limits _{x\to 1}\frac{dx(nx^{n-1}-n)}{dx(2x-2)}=\lim\limits _{x\to 1}\frac{n(n-1)x^{n-2}}{2}=\frac{n(n-1)}{2}\)

Bài 18:

Khách vãng lai đã xóa
Akai Haruma
12 tháng 3 2020 lúc 16:08

Bài 18:

\(\lim\limits _{x\to 2+}f(x)=\lim\limits _{x\to 2+}\frac{x^2-2x}{8-x^3}=\lim\limits _{x\to 2+}\frac{x(x-2)}{(2-x)(4+2x+x^2)}=\lim\limits _{x\to 2+}\frac{-x}{x^2+2x+4}=\frac{-1}{6}\)

\(\lim\limits _{x\to 2-}f(x)=\lim\limits _{x\to 2-}\frac{x^4-16}{x-2}=\lim\limits _{x\to 2-}\frac{(x^2-4)(x^2+4)}{x-2}=\lim\limits _{x\to 2-}(x+2)(x^2+4)=32\)

Ta thấy \(\lim\limits _{x\to 2+}f(x)\neq \lim\limits _{x\to 2-}f(x)\) nên không tồn tại giới hạn $f(x)$ tại $x=2$

Khách vãng lai đã xóa
Akai Haruma
11 tháng 3 2020 lúc 9:59

Bài 1:

\(\lim\limits_{x\to1}\frac{2x^2-3x+1}{x^3-x^2-x+1}=\lim\limits_{x\to1}\frac{\left(x-1\right)\left(2x-1\right)}{\left(x+1\right)\left(x-1\right)^2}=\lim\limits_{x\to1}\frac{2x-1}{\left(x+1\right)\left(x-1\right)}\)

\(=\lim\limits_{x\to 1}\frac{2(x-1)+1}{(x-1)(x+1)}=\lim\limits_{x\to 1}\frac{2}{x+1}+\lim\limits_{x\to 1}\frac{1}{x^2-1}\)

Có: \(\lim\limits_{x\to 1+} \frac{2x^2-3x+1}{x^3-x^2-x+1}=+\infty \)

\(\lim\limits_{x\to 1-} \frac{2x^2-3x+1}{x^3-x^2-x+1}=-\infty \)

Khách vãng lai đã xóa
Ngọc Ánh Nguyễn Thị
11 tháng 3 2020 lúc 18:44

j

Khách vãng lai đã xóa

Các câu hỏi tương tự
Trần Phương Thảo
Xem chi tiết
Trần Phương Thảo
Xem chi tiết
dung doan
Xem chi tiết
Trần Phương Thảo
Xem chi tiết
lu nguyễn
Xem chi tiết
Sách Giáo Khoa
Xem chi tiết
James Pham
Xem chi tiết
Trần Phương Thảo
Xem chi tiết
hằng hồ thị hằng
Xem chi tiết