\(\left\{{}\begin{matrix}k\ne-2\\\Delta'=k^2+k\left(k+2\right)>0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}k\ne-2\\\left[{}\begin{matrix}k\ge0\\k\le-1\end{matrix}\right.\end{matrix}\right.\)
Theo định lý Viet ta có: \(\left\{{}\begin{matrix}x_1+x_2=\frac{2k}{k+2}\\x_1x_2=\frac{-k}{k+2}\end{matrix}\right.\)
\(\frac{x_1+x_2}{2}=1\)
\(\Leftrightarrow x_1+x_2=2\)
\(\Leftrightarrow\frac{2k}{k+2}=2\)
\(\Leftrightarrow2k=2k+4\)
Không tồn tại k thỏa mãn