\(ĐKXĐ:x>0\)
\(P=\dfrac{x+9}{6\sqrt{x}}=\dfrac{x-6\sqrt{x}+9+6\sqrt{x}}{6\sqrt{x}}=\dfrac{\left(\sqrt{x}-3\right)^2}{6\sqrt{x}}+1\ge1\)
Dấu "=" xảy ra \(\Leftrightarrow\sqrt{x}-3=0\Leftrightarrow x=9\)
Vậy \(MinP=1\)
\(P=\dfrac{x+9}{6\sqrt{x}}=\dfrac{x}{6\sqrt{x}}+\dfrac{9}{6\sqrt{x}}=\dfrac{\sqrt{x}}{6}+\dfrac{9}{6\sqrt{x}}\ge2\sqrt{\dfrac{9}{6.6}}=1\)
\(dấu"="\Leftrightarrow\dfrac{\sqrt{x}}{6}=\dfrac{9}{6\sqrt{x}}\Leftrightarrow x=9\)