1) Cho các số thực x,y>0 thỏa mãn : \(\dfrac{y}{2x+3}\)= \(\dfrac{\sqrt{2x+3}+1}{\sqrt{y}+1}\)
Tìm GTNN của biểu thức .
2) Tìm GTNN của biểu thức : A=\(\dfrac{3x^2-8x+6}{x^2-2x+1}\)
3) Tìm GTLN của D=\(\dfrac{x}{\left(x+100\right)^2}\)
Bài 4:
Cho D = \(\dfrac{2}{x}\)- \((\dfrac{x^2}{x^2-xy}+\dfrac{x^2-y^2}{xy}-\dfrac{y^2}{y^2-xy})\): \(\dfrac{x^2-xy+y^2}{x-y}\)
a) Rút gọn D
b) Tính D với |2x - 1| = 1 ; |y + 1| =\(\dfrac{1}{2}\)
Bài 5:
Cho E = \((\dfrac{2x}{x+3}+\dfrac{x}{x-3}-\dfrac{3x^2+3}{x^2-9})\): \((\dfrac{2x-2}{x-3}-1)\)
a) Rút gọn E
b) Tìm x để E < \(\dfrac{1}{2}\)
c) Tìm GTNN của E (x + 3) (1 - x - x2)
1) Cho x- y= 7. Tính \(M=x^3-3xy\left(x-y\right)-y^3-x^2+2xy-y^2\)
\(N=x^2\left(x+1\right)-y^2\left(y-1\right)+xy-3xy\left(x-y+1\right)-2017\)
2) Cho x+ y= 3 và \(x^2+y^2=5\) Tính \(x^3+y^3\)
x- y= 5 và \(x^2+y^2=1\)Tính \(x^3-y^3\)
3)Tìm x, y sao cho
a) \(A=2x^2+9y^2-6xy-6x-12y+2018\) có GTNN
b)\(B=-x^2+2xy-4y^2+2x+10y-8\) có GTLN
4) Cho \(x+y=a;x^2+y^2=b;x^3+y^3=c\) . Chứng minh \(a^3-3ab+2c=0\)
5) Cho a>b>c. Thỏa mãn \(3a^2+3b^2=10ab\)
Tính \(P=\dfrac{a-b}{a+b}\)
6) Cho x>y>0 và \(2x^2+2y^2=5xy\) Tính \(E=\dfrac{x+y}{x-y}\)
7) Cho \(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}=0\)
Tính \(\dfrac{ab}{c^2}+\dfrac{bc}{a^2}+\dfrac{ca}{b^2}\)
Cho x,y là các số thực không đồng thời bằng 0 chứng minh
A=\(\dfrac{2xy}{x^2+4y^2}\)+ \(\dfrac{y^2}{3x^2+2y^2}\)≤\(\dfrac{3}{5}\)
1. Chứng minh rằng:
\(x^2+y^2+z^2+3\ge2\cdot\left(x+y+z\right)\)
2. Cho a,b,c,d,e là các số thực, chứng minh rằng:
a) \(a^2+b^2+1\ge a\cdot b+a+b\)
b) \(a^2+b^2+c^2+d^2+e^2\ge a\cdot\left(b+c+d+e\right)\)
3. Cho a,b,c thỏa mãn:
\(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}=\dfrac{1}{a+b+c}\)
Tính giá trị biểu thức: \(A=\left(a^3+b^3\right)\left(b^3+c^3\right)\left(c^3+a^3\right)\)
4. Tìm giá trị nhỏ nhất của biểu thức sau:
a) \(A=x\left(x-3\right)\left(x-4\right)\left(x-7\right)\)
b) \(A=\dfrac{3x^2-8x+6}{x^2-2x+1}\)
5. Cho \(x+y+z=3\)
a) Tìm GTNN của \(A=x^2+y^2+z^2\)
b) Tìm GTLN của \(B=xy+yz+xz\)
1) Tìm giá trị nhỏ nhất của biểu thức A, B, C, D và giá trị lớn nhất của biểu thức E, F:
A = x2 - 4x + 1 B = 4x2 + 4x + 11 C = (x -1)(x + 3)(x + 2)(x + 6)
D = 2x2 + y2 – 2xy + 2x – 4y + 9 E = 5 - 8x - x2 F = 4x - x2 +1
tìm gtnn của biểu thức
a/A= x^2 + 2y^2+2xy +4x + 6y +19
b/B=2x^2+y^2+2xy-2y-4
c/C=4x^2 +2xy-4x+4xy-3
Tìm GTNN và GTLN của
a) \(A=\dfrac{27-12x}{x^2+9}\)
b) \(B=\dfrac{8x+3}{4x^2+1}\)
c) \(C=\dfrac{2x+1}{x^2+2}\)
d) \(D=\dfrac{3x^2-2x+3}{x^2+1}\)
điều kiện xác định của phương trình \(\dfrac{8x+1}{2x+5}=\dfrac{4x+3}{x-2}\)là?
A. x \(\ne\)2 B. x \(\ne\)\(\dfrac{-5}{2}\) C. x \(\ne\)2 hoặc x \(\ne\)\(\dfrac{-5}{2}\) D. x\(\ne\)2 và x\(\ne\)\(\dfrac{-5}{2}\)