\(A=9x^2+6x-7\)
\(\Rightarrow A=\left(3x\right)^2+2\cdot3x+1-8\)
\(\Rightarrow A=\left(3x+1\right)^2-8\ge-8\)
Vậy GTNN của A là -8
A\(=9x^2+6x-7\)
\(=9\left(x^2+\dfrac{2}{3}x-\dfrac{7}{9}\right)\)
\(=9\left(x^2+2.x.\dfrac{1}{3}+\dfrac{1}{9}+\dfrac{-8}{9}\right)\)
\(=9\left(x+\dfrac{1}{3}\right)^2+\left(-8\right)\)
Vì \(\left(x+\dfrac{1}{3}\right)^2\ge0\)
\(\Rightarrow\left(x+\dfrac{1}{3}\right)^2+\left(-8\right)\ge-8\)
Dấu = xảy ra khi x+\(\dfrac{1}{3}=0\Rightarrow x=\dfrac{-1}{3}\)
Vậy GTNN của A=-8 khi x=\(\dfrac{-1}{3}\)