a, ta có :(x-3)\(^2\)\(\ge\)0 nên N \(\ge\)6
Min N =6 khi (x-3)\(^2\)=0\(\Rightarrow\)x-3=0\(\Rightarrow\)x=3
Vậy Min N=6 với x=3
b, vì (x-\(^{\frac{5}{4}}\))\(^2\)\(\ge\)0 nên 2(x-\(\frac{5}{4}\))\(\ge\)0\(\Rightarrow\) P \(\ge\frac{39}{8}\)
Min P=\(\frac{39}{8}\) với 2(x-\(\frac{5}{4}\))=0\(\Rightarrow\)x-\(\frac{5}{4}\)=0\(\Rightarrow x=\frac{5}{4}\)
vậy Min P=\(\frac{39}{8}\) với x =\(\frac{5}{4}\)
a)Ta thấy: \(\left(x-3\right)^2\ge0\)
\(\Rightarrow\left(x-3\right)^2+6\ge6\)
\(\Rightarrow N\ge6\)
Dấu "=" khi \(x=3\)
Vậy \(Min_N=6\) khi \(x=3\)
b)Ta thấy: \(\left(x-\frac{5}{4}\right)^2\ge0\)
\(\Rightarrow2\left(x-\frac{5}{4}\right)^2\ge0\)
\(\Rightarrow2\left(x-\frac{5}{4}\right)^2+\frac{39}{8}\ge\frac{39}{8}\)
Dấu "=" khi \(x=\frac{5}{4}\)
Vậy \(Min_P=\frac{39}{8}\) khi \(x=\frac{5}{4}\)