\(A=\left|x-1\right|+\left|x-2\right|+\left|4-2x\right|\)
\(\)Áp dụng BĐT: \(\left|A\right|+\left|B\right|\ge\left|A+B\right|\)
\(\Rightarrow A\ge\left|x-1+x-2+4-2x\right|\)
\(\Rightarrow A\ge\left|2x-2x-1-2+4\right|\)
\(\Rightarrow A\ge1\)
Dấu "=" xảy ra khi:
\(\left[{}\begin{matrix}\left\{{}\begin{matrix}x-1< 0\Rightarrow x< 1\\x-2< 0\Rightarrow x< 2\\4-2x< 0\Rightarrow4< 2x\Rightarrow2< x\end{matrix}\right.\\\left\{{}\begin{matrix}x-1\ge0\Rightarrow x\ge1\\x-2\ge0\Rightarrow x\ge2\\4-2x\ge0\Rightarrow4\ge2x\Rightarrow2\ge x\end{matrix}\right.\end{matrix}\right.\)
\(\Rightarrow x=2\)