ĐKXĐ: \(x\ge0\)
\(A=\frac{5\sqrt{x}-10}{5\left(x+5\right)}=\frac{-2\left(x+5\right)+2x+5\sqrt{x}}{5\left(x+5\right)}=-\frac{2}{5}+\frac{2x+5\sqrt{x}}{5\left(x+5\right)}\ge-\frac{2}{5}\)
\(A_{min}=-\frac{2}{5}\) khi \(2x+5\sqrt{x}=0\Leftrightarrow x=0\)
\(A=\frac{10\sqrt{x}-20}{10\left(x+5\right)}=\frac{x+5-x+10\sqrt{x}-25}{10\left(x+5\right)}=\frac{1}{10}-\frac{\left(\sqrt{x}-5\right)^2}{10\left(x+5\right)}\le\frac{1}{10}\)
\(A_{max}=\frac{1}{10}\) khi \(\sqrt{x}=5\Leftrightarrow x=25\)