Đặt \(Q=\frac{x-2}{x^3-x^2-x-2}\)
\(Q=\frac{x-2}{\left(x-2\right)\left(x^2+x+1\right)}\)
\(Q=\frac{1}{x^2+x+1}\)
Dễ thấy \(Q>0\forall x\) do đó để \(Q_{max}\) thì \(x^2+x+1\) min
Ta có : \(x^2+x+1=x^2+2\cdot x\cdot\frac{1}{2}+\frac{1}{4}+\frac{3}{4}\)
\(=\left(x+\frac{1}{2}\right)^2+\frac{3}{4}\ge\frac{3}{4}\forall x\)
Dấu "=" xảy ra \(\Leftrightarrow x=\frac{-1}{2}\)
Từ đó suy ra \(Q\le\frac{1}{\frac{3}{4}}=\frac{4}{3}\)
Dấu "=" xảy ra \(\Leftrightarrow x=\frac{-1}{2}\)