Cho ba số thực x, y, z thỏa mãn x2+y2+z2=3. Tìm GTNN của biểu thức: M=\(\frac{x^2+1}{x}+\frac{y^2+1}{y}+\frac{z^2+1}{z}-\frac{1}{x+y+z}\)
Cho 3 số thực dương x, y, z thỏa mãn x + y + z = 3. Tìm GTNN của biểu thức:
S = \(\frac{x}{1+y^2}+\frac{y}{1+z^2}+\frac{z}{1+x^2}\)
1, cho 3 số thực dương x,y,z thỏa mãn:x+y+z=9
Tìm GTNN của biểu thức: S=\(\frac{x^3}{x^2+xy+y^2}+\frac{y^3}{y^2+yz+z^2}+\frac{z^3}{z^2+zx+x^2}\)
1.Cho a,b là các số dương thay đổi thỏa mãn a+b=2
Tính GTNN biểu thức D=\(\frac{a+b}{ab}+\frac{ab}{a+b}\)
2. Cho 3 số dương x,y,z thỏa mãn x+y+z=1
Tìm GTLN của biểu thức B=\(\frac{x}{x+1}+\frac{y}{y+1}+\frac{z}{z+1}\)
3. Tính GTNN của biểu thức T=\(\sqrt{x^2-x+2}+\sqrt{x^2+x+2}\)
4. Tính GTLN A=\(\sqrt{x-1}+\sqrt{y-2}\) biết x+y=4
Cho x,y,z là ba số thực dương thỏa x2+y2+z2=1. CMR:
\(\frac{1}{x^2+y^2}+\frac{1}{y^2+z^2}+\frac{1}{z^2+x^2}\le3+\frac{x^3+y^3+z^3}{2xyz}\)
Đẳng thức xảy ra khi nào?
Cho 3 số thực x,y,z thỏa mãn \(\dfrac{1}{x^{2}} + \dfrac{1}{y^{2}} + \dfrac{1}{z^{2}}\)= 3
Tìm GTNN của biểu thức P = \(\dfrac{y^{2}z^{2}}{x(y^{2}+z^{2})} + \dfrac{z^{2}x^{2}}{y(z^{2}+x^{2})} + \dfrac{x^{2}y^{2}}{z(x^2+y^2)}\)
cho 3 số thực x,y,z>0 thỏa mãn \(x+y+z\ge6\)
Tìm GTNN của \(P=\frac{x^3+y^3}{x^2+y^2}+\frac{y^3+z^3}{y^2+z^2}+\frac{z^3+x^3}{z^2+x^2}\)
Cho ba số dương x, y, z thỏa mãn điều kiện x+y+z=2. Tìm GTNN của biểu thức P=\(\frac{x^2}{y+z}+\frac{y^2}{z+x}+\frac{z^2}{x+y}\)
Cho x, y, z, là các số thực dương thoả mãn x2 + y2 + z2 = 3. Tính GTNN :
M = \(\frac{x^2+1}{x}+\frac{y^2+1}{y}+\frac{z^2+1}{z}-\frac{1}{x+y+z}\)