\(A=5-2x^2-4x=-2-2x^2-4x+7=-2\left(x-1\right)^2+7\le0+7=7\Rightarrow A_{max}=7.\Leftrightarrow x-1=0\Leftrightarrow x=1\)
\(x^2-6x+11=\left(x-3\right)^2+2\ge2\Rightarrow\frac{1}{x^2-6x+11}\le\frac{1}{2}\Rightarrow B_{max}=\frac{1}{2}\Leftrightarrow x-3=0\Leftrightarrow x=3\)