\(\lim\limits_{x\rightarrow1^+}\dfrac{\sqrt{x}+\sqrt{x-1}-1}{\sqrt{x^2-1}}\)
\(=\lim\limits_{x\rightarrow1^+}\dfrac{\dfrac{\left(x-1\right)}{\sqrt{x}+1}+\left(\sqrt{x-1}\right)}{\sqrt{\left(x-1\right)\left(x+1\right)}}\)
\(=\lim\limits_{x\rightarrow1^+}\dfrac{\left(\sqrt{x-1}\right)\left(\dfrac{\sqrt{x-1}}{\sqrt{x}+1}+1\right)}{\sqrt{x-1}\cdot\sqrt{x+1}}\)
\(=\lim\limits_{x\rightarrow1^+}\dfrac{\left(\dfrac{\sqrt{x-1}}{\sqrt{x}+1}+1\right)}{\sqrt{x+1}}=\dfrac{\dfrac{\sqrt{1-1}}{\sqrt{1}+1}+1}{\sqrt{1+1}}\)
\(=\dfrac{1}{\sqrt{2}}=\dfrac{\sqrt{2}}{2}\)