\(M=2x^2-4x-7=2\left(x^2-2x+1\right)-9=2\left(x-1\right)^2-9\ge-9\)
Vậy GTNN của M là -9 khi x = 1
\(M=2x^2-4x-7\)
\(=2\left(x^2-2x-\dfrac{7}{2}\right)\)
\(=2\left(x^2-2x+1-1-\dfrac{7}{2}\right)\)
\(=2\left[\left(x-1\right)^2+\left(-1-\dfrac{7}{2}\right)\right]\)
\(=2\left[\left(x-1\right)^2-4,5\right]\)
\(=2\left(x-1\right)^2-9\) \(\ge-9\forall x\)
Vì \(2\left(x-1\right)^2\ge0\forall x\)
Dấu "=" xảy ra khi x-1=0=> x=1
Vậy \(M_{min}\)=-9 khi x=1