9y^2 =t >=0
\(N=\left(10+t\right)^2+t=t^2+21t+10^2=\left(t+\dfrac{21}{2}\right)^2+10^2-\dfrac{21^2}{4}\)
\(\left\{{}\begin{matrix}t\ge0\\t+\dfrac{21}{2}\ge\dfrac{21}{2}\end{matrix}\right.\)
\(N\ge\left(\dfrac{21}{2}\right)^2+10^2-\dfrac{21^2}{4}\)
\(N_{min}=100\)