Cho các số thực dương x;y thỏa mãn: \(6x+9-\sqrt{y}.\left(y+1\right)=3y-\left(2x+4\right).\sqrt{2x+3}\). Tìm giá trị nhỏ nhất của biểu thức: \(D=xy+3y-4x^2-3\)
Cho hai số dương x,y thoả mãn \(x\left(x^3+y^3\right)+6xy\left(x+y-2\right)=\left(x+y\right)^2\left(xy+4\right)\)
Tìm giá trị nhỏ nhất của biểu thức \(T=\frac{1}{2}\left(\frac{x}{y}+\frac{y}{x}+1\right)\)
Cho 2<x<3. Tìm giá trị nhỏ nhất của biểu thức: P=\(\frac{1}{\left(x-2\right)^2}+\frac{1}{\left(x-3\right)^2}-\frac{1}{\left(x-2\right)\left(x-3\right)}\)
Tìm GTNN của biểu thức \(A=\left(x-1\right)^4+\left(x-3\right)^4+6\left(x-1\right)^2\left(x-2\right)^2\)
Cho hai số dương x,y thoả mãn \(x\left(x^3+y^3\right)+6xy\left(x+y-2\right)=\left(x+y\right)^2\left(xy+4\right)\)
Tìm giái trị nhỏ nhất của biểu thức
T=\(\frac{1}{2}\left(\frac{x}{y}+\frac{y}{x}+1\right)\)
Cho x+y+z=6. Tìm giá trị nhỏ nhất của biểu thức: \(E=\left(x+1\right)^2+\left(y+2\right)^2+\left(z+3\right)^2\)
Cho x,y,z là các số thực dương thỏa mãn đẳng thức xy+yz+zx=5. Tìm giá trị nhỏ nhất của biểu thức
\(P=\frac{3x+3y+3z}{\sqrt{6\left(x^2+5\right)}+\sqrt{6\left(y^2+5\right)}+\sqrt{6\left(z^2+5\right)}}\)
Cho các số thực không âm a,b. Tìm giá trị nhỏ nhất của biểu thức: \(P=\dfrac{\left(a^2+2b+3\right).\left(b^2+2a+3\right)}{\left(2a+1\right).\left(2b+1\right)}\)
Tìm giá trị nhỏ nhất của biểu thức: \(Q=\frac{1}{2}\left(\frac{x^{10}}{y^2}+\frac{y^{10}}{x^2}\right)+\frac{1}{4}\left(x^{16}+y^{16}\right)-\left(1+x^2y^2\right)^2\)