\(A=a^4-2a^3+2a^2-2a+2\)
\(A=a^2\left(a-1\right)^2+\left(a-1\right)^2+1\)
Vì \(a^2\left(a-1\right)^2\ge0\) và \(\left(a-1\right)^2\ge0\)
\(\Rightarrow a^2\left(a-1\right)^2+\left(a-1\right)^2\ge0\)
\(\Rightarrow a^2\left(a-1\right)^2+\left(a-1\right)^2+1\ge1\)
\(\Rightarrow Min_A=1\) khi \(a-1=0\Rightarrow a=1\)