\(A=4x^2+5y^2-4xy-16y+22\)
\(=\left(4x^2-4xy+y^2\right)+\left(4y^2-16y+16\right)+6\)
\(=\left(2x-y\right)^2+4\left(y^2-4y+4\right)+6\)
\(=\left(2x-y\right)^2+4\left(y-2\right)^2+6\ge6\forall x\)
Dấu " = " xảy ra \(\Leftrightarrow\left\{{}\begin{matrix}2x-y=0\\y-2=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}2x=y\\y=2\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=2\end{matrix}\right.\)
Vậy Min A là : \(6\Leftrightarrow x=1;y=2\)