A=x2-7x+11=\(x^2-2\cdot\dfrac{7}{2}\cdot x+\dfrac{49}{4}-\dfrac{5}{4}=\left(x-\dfrac{7}{2}\right)^2-\dfrac{5}{4}\ge-\dfrac{5}{4}\forall x\in R\)
=>min A=\(-\dfrac{5}{4}\) khi và chỉ khi \(x-\dfrac{7}{2}=0\Leftrightarrow x=\dfrac{7}{2}\)
Vậy...
Ta có : x2 \(\geq\)0
\(\Rightarrow\)x2 -7x\(\geq\)0
\(\implies\)x2 -7x + 11 \(\geq\)11
\(\Rightarrow\) Min A là 11