\(\Leftrightarrow\left\{{}\begin{matrix}u_1=1\\\frac{u_n}{n}=\frac{u_{n-1}}{n-1}+1\end{matrix}\right.\)
Đặt \(v_n=\frac{u_n}{n}\Rightarrow\left\{{}\begin{matrix}v_1=1\\v_n=v_{n-1}+1\end{matrix}\right.\)
\(\Rightarrow v_n\) là CSC với công sai \(d=1\)
\(\Rightarrow v_n=1+\left(n-1\right).1=n\)
\(\Rightarrow\frac{u_n}{n}=n\Rightarrow u_n=n^2\)
Câu b có vẻ đề sai, số hạng cuối không thể là \(u_n\) mà phải là 1 số hữu hạn ví dụ \(u_{2016}\) gì đó
Hoặc nếu nó là \(u_n\) thì đề sẽ là "tìm n lớn nhất sao cho..."
Dù sao từ tổng: \(\sum u_n=\sum n^2=\frac{n\left(n+1\right)\left(2n+1\right)}{6}\) có thể dễ dàng giải được khi đề bài chính xác