Lời giải:
Ta có: $3^x.y^2=4z^2+8z+1=(2z+2)^2-3$
$\Rightarrow (2z+2)^2=3+3^x.y^2$
Xét các TH sau:
TH1: $x=0\Rightarrow (2z+2)^2=3+y^2$
$\Leftrightarrow (2z+2)^2-y^2=3$
$\Leftrightarrow (2z+2-y)(2z+2+y)=3$ (đây là dạng phương trình tích đơn giản với các thừa số nguyên)
TH2: $x=1\Rightarrow (2z+2)^2=3+3y^2\vdots 3\Rightarrow 2z+2\vdots 3$
$\Rightarrow 3+3y^2=(2z+2)^2\vdots 9\Rightarrow y^2+1\vdots 3$
Điều này hoàn toàn vô lý do ta có tính chất 1 số chính phương khi chia cho $3$ có dư là $0$ hoặc $1$. Do đó $y^2+1$ chia 3 có dư là $1$ hoặc $2$.
TH3: $x\geq 2\Rightarrow (2z+2)^2=3+3^x.y^2\vdots 3\Rightarrow 2z+2\vdots 3$
$\Rightarrow 3+3^x.y^2=(2z+2)^2\vdots 9$
Điều này vô lý do $3\not\vdots 9$ và $3^x.y^2\vdots 9$ với mọi $x\geq 2$
Vậy.........