Theo bài ra: \(\dfrac{1+5y}{24}=\dfrac{1+7y}{7x}=\dfrac{1+9y}{2x}\left(1\right)\)
Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:
\(\dfrac{1+5y}{24}=\dfrac{1+7y}{7x}=\dfrac{1+9y}{2x}=\dfrac{-2y}{24-7x}=\dfrac{-2y}{5x}\)
TH1: \(y=0\)
\(\Rightarrow\left(1\right)\Rightarrow\dfrac{1}{24}=\dfrac{1}{7x}=\dfrac{1}{2x}\) (vô lí)
\(\Rightarrow\) Loại
TH2: \(y\ne0\)
\(\Rightarrow\dfrac{-2y}{24-7x}=\dfrac{-2y}{5x}\)
\(\Rightarrow24-7x=5x\)
\(\Rightarrow12x=24\)
\(\Rightarrow x=2\)
Thay \(x=2\) vào \(\dfrac{1+5y}{24}=\dfrac{1+7y}{7x}\) , ta được:
\(\dfrac{1+5y}{24}=\dfrac{1+7y}{14}\)
\(\Rightarrow\left(1+5y\right)14=\left(1+7y\right)24\)
\(\Rightarrow14+70y=24+168y\)
\(\Rightarrow70y-168y=24-14\)
\(\Rightarrow-98y=10\)
\(\Rightarrow y=-\dfrac{5}{49}\)
Vậy \(x=2;y=-\dfrac{5}{49}\)