\(\sqrt{x-2016}+\sqrt{y-2017}+\sqrt{z-2018}+3024=\frac{1}{2}\left(x+y+z\right)\)
GẢI HỘ MÌNH PHUONG TRÌNH NÀY Ạ
Cho hai so duong x,y co tong bang 1
Tim GTNN cua P=\(\left(1-\frac{1}{x^2}\right)\left(1-\frac{1}{y^2}\right)\)
Cho x, y, z thỏa mãn : \(\dfrac{1}{xy}+\dfrac{1}{yz}+\dfrac{1}{zx}=1\). Cmr :
\(\dfrac{x}{\sqrt{yz\left(1+x^2\right)}}+\dfrac{y}{\sqrt{zx\left(1+y^2\right)}}+\dfrac{z}{\sqrt{xy\left(1+z^2\right)}}\ge\dfrac{3}{2}\).
a, Rút gọn biểu thức \(A=\dfrac{\sqrt{1-\sqrt{1-x^2}}\left(\sqrt{\left(1+x\right)^3}+\sqrt{\left(1-x\right)^3}\right)}{2-\sqrt{1-x^2}}\) với \(-1\le x\le1\)
b, Tính giá trị biểu thức Q = \(\dfrac{a^6-2a^5+a-2}{a^5+1}\)biết \(\dfrac{a}{x+y}=\dfrac{5}{x+z}\)và \(\dfrac{25}{\left(x+z\right)^2}=\dfrac{16}{\left(z-y\right)\left(2x+y-z\right)}\)
Giúp em với ạ
Cho các số dương x, y, z thỏa mãn \(\frac{1}{xy}+\frac{1}{yz}+\frac{1}{xz}=1\)
Chứng minh rằng: \(A=\sqrt{\frac{x^2}{yz\left(1+x^2\right)}}+\sqrt{\frac{y^2}{zx\left(1+y^2\right)}}+\sqrt{\frac{z^2}{xy\left(1+z^2\right)}}\le\frac{3}{2}\)
Bài Toán :
Cho x, y, z > 0 và thỏa mãn :
\(\dfrac{1}{xy}+\dfrac{1}{yz}+\dfrac{1}{xz}=1\)
Tính giá trị lớn nhất của biểu thức :
\(Q=\dfrac{x}{\sqrt{yz.\left(1+x^2\right)}}+\dfrac{y}{\sqrt{xz.\left(1+y^2\right)}}+\dfrac{z}{\sqrt{xy.\left(1+z^2\right)}}\)
Cho các số dương x;y;z thỏa mãn:\(x+2y+3z=0\) và \(2xy+6yz+3zx=0\)
Tính giá trị biểu thức :\(S=\frac{\left(x-1\right)^{2019}-\left(1-y\right)^{2017}+\left(3z-1\right)^{2015}}{\left(x+1\right)^{2018}+2\left(y-z\right)^{2016}+y^{2014}+2}\)
Cho các số thực x, y, z thỏa mãn \(x+2y+3z=0\) và \(2xy+6yz+3zx=0\)
Tính giá trị biểu thức \(S=\dfrac{\left(x-1\right)^{2019}-\left(1-y\right)^{2017}+\left(3z-1\right)^{2015}}{\left(x+1\right)^{2018}+2\left(y-z\right)^{2016}+y^{2014}+2}\)
Rút gọn: \(\left(\frac{x-y}{\sqrt{x}-\sqrt{y}}-\frac{x\sqrt{x}-y\sqrt{y}}{x-y}\right).\frac{\left(\sqrt{x}-\sqrt{y}\right)^2}{x\sqrt{x}+y\sqrt{y}}\)