CHo x,y > 0, x + y = 1. Tìm GTNN của \(S=\left(x+\frac{1}{x}\right)^2+\left(y+\frac{1}{y}\right)^2\)
Cho x,y >0 thoả mãn : x+y=1. Tìm GTNN:
A= \(\frac{4}{x}+\frac{9}{y}\)
B= \(\left(x+\frac{1}{x}\right)^2+\left(y+\frac{1}{y}\right)^2\)
cm các biểu thức sau ko phụ thuộc vào biến:
a,\(\left[\frac{2\left(x+1\right)\left(y+1\right)}{\left(x+1\right)^2-\left(y+1\right)^2}+\frac{x-y}{2x+2y+4}\right].\frac{2x+2}{x+y+2}+\frac{y+1}{y-x}\)
b,\(\left[2\left(x+y\right)+1-\frac{1}{1-2x-2y}\right]:\left[2x+2y-\frac{4x^2+8xy+4y^2}{2x+2y-1}\right]+2\left(x+y\right)\)
\(\left(1+\frac{1}{x}\right)^2+\left(1+\frac{1}{y}\right)^2=1+\frac{2}{x}+\frac{1}{x^2}+1+\frac{2}{y}+\frac{1}{y^2}\)
\(=2+\frac{2x+1}{x^2}+\frac{2y+1}{y^2}\)\(=2+\frac{2xy^2+y^2+2x^2y+x^2}{x^2y^2}\)\(=2+\frac{2xy\left(x+y\right)+\left(x+y\right)^2-2xy}{x^2y^2}\)
thay x+y=1 vào biểu thức, ta có:
\(2+\frac{2xy+1-2xy}{x^2y^2}=2+\frac{1}{x^2y^2}=2+\left(\frac{1}{xy}\right)^2\)
vì \(\left(\frac{1}{xy}\right)^2\ge0\) nên GTNN của biểu thức là 2
cái này mình giải dùm một bạn của mình, mọi người đi qua đừng chú ý nhé
thực hiện phép tính
a,\(x^3+\left[\frac{x\left(2y^3-x^3\right)}{x^3+y^3}\right]^3-\left[\frac{y\left(2x^3-y^3\right)}{x^3+y^3}\right]^3\)
b,\(\frac{\frac{x\left(x+y\right)}{x-y}+\frac{x\left(x+z\right)}{x-z}}{1+\frac{\left(y-z\right)^2}{\left(x-y\right)\left(x-z\right)}}+\frac{\frac{y\left(y+z\right)}{y-z}+\frac{y\left(y+x\right)}{y-x}}{1+\frac{\left(z-x\right)^2}{\left(y-z\right)\left(y-x\right)}}+\frac{\frac{z\left(z+x\right)}{z-x}+\frac{z\left(z+y\right)}{z-y}}{1+\frac{\left(x-y\right)^2}{\left(z-x\right)\left(z-y\right)}}\)
c,\(\left[\frac{y+z-2x}{\frac{\left(y-z\right)^3}{y^3-z^3}+\frac{\left(x-y\right)\left(x-z\right)}{y^2+yz+z^2}}+\frac{z+x-2y}{\frac{\left(z-x\right)^3}{z^3-x^3}+\frac{\left(y-z\right)\left(y-x\right)}{z^2+xz+x^2}}+\frac{x+y-2z}{\frac{\left(x-y\right)^3}{x^3-y^3}+\frac{\left(z-x\right)\left(z-y\right)}{x^2+xy+y^2}}\right]:\frac{1}{x+y+z}\)
Cho \(A=\frac{\left(x^2+y\right)\left(y+\frac{1}{4}\right)+x^2y^2+\frac{3}{4}\left(y+\frac{1}{3}\right)}{x^2y^2+1+\left(x^2-y\right)\left(1-y\right)}\)
a) CM giá trị của A ko phụ thuộc x
b) Tìm minA
thực hiện phép tính
a, \(\frac{x^2-yz}{1+\frac{y+x}{x}}+\frac{y^2-xz}{1+\frac{z+x}{y}}+\frac{z^2-xy}{1+\frac{x+y}{z}}\)
b, \(\left(1+\frac{y^2+z^2-x^2}{2yz}\right).\frac{1+\frac{x}{y+z}}{1-\frac{x}{y+z}}.\frac{y^2+z^2-\left(y-z\right)^2}{x+y+z}\)
c,\(\frac{2}{3}\left[\frac{1}{1+\frac{\left(2x+1\right)^2}{3}}+\frac{1}{1+\frac{\left(2x-1\right)^2}{3}}\right]\)
Cho biểu thức H=\(\frac{x^2y^2}{\left(x+1\right)\left(y-1\right)}-\frac{x^2}{\left(x+y\right)\left(y-1\right)}-\frac{y^2}{\left(x+y\right)\left(x+1\right)}\)
a) Rút gọn H
b) Tìm các cặp số nguyên (x,y) sao cho giá trị của H=6
chứng minh rằng giá trị biểu thức sau ko hụ thuộc vào biến
a.\(\left(\frac{1}{3}+2x\right)\left(4x^2-\frac{2}{3}x+\frac{1}{9}\right)-\left(8x^3-\frac{1}{27}\right)\)
b.\(\left(x-1\right)^3-\left(x-1\right)\left(x^2+x+1\right)-3\left(1-x\right)x\)
c.\(y\left(x^2-y^2\right)\left(x^2+y^2\right)-y\left(x^4-y^4\right)\)