\(\left\{{}\begin{matrix}a\left(a+b+c\right)=36\\b\left(a+b+c\right)=48\\c\left(a+b+c\right)=60\end{matrix}\right.\)
Cộng theo vế 3 pt trên ta có:
\(a\left(a+b+c\right)+b\left(a+b+c\right)+c\left(a+b+c\right)=144\)
\(\Leftrightarrow\left(a+b+c\right)^2=144\Leftrightarrow a+b+c=12\)
\(\Rightarrow\left\{{}\begin{matrix}a\cdot12=36\\b\cdot12=48\\c\cdot12=60\end{matrix}\right.\)\(\Rightarrow\left\{{}\begin{matrix}a=3\\b=4\\c=5\end{matrix}\right.\)