Xin câu a :3
a) (x + y + 1)2 = 3(x2 + y2) + 1
<=> x2 + y2 + 1 + 2xy + 2x + 2y = 3x2 + 3y2 + 1
<=> 2x2 + 2y2 - 2xy - 2x - 2y = 0
<=> (x2 - 2xy + y2) + (x2 - 2x + 1) + (y2 - 2y + 1) = 2
<=> (x - y)2 + (x - 1)2 + (y - 1)2 = 2
Vì 2 = 02 + 12 + 12 nên ta có các TH sau:
TH1:
\(\left\{{}\begin{matrix}\left(x-y\right)^2=0\\\left(x-1\right)^2=1\\\left(y-1\right)^2=1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=y=2\\x=y=0\end{matrix}\right.\)
TH2:
\(\left\{{}\begin{matrix}\left(x-y\right)^2=1\\\left(x-1\right)^2=0\\\left(y-1\right)^2=1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1;y=0\\x=1;y=2\end{matrix}\right.\)
TH3:
\(\left\{{}\begin{matrix}\left(x-y\right)^2=1\\\left(x-1\right)^2=1\\\left(y-1\right)^2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=2;y=1\\x=0;y=1\end{matrix}\right.\)
Vậy ...
a) ta có : \(\left(x+y+1\right)^2=3\left(x^2+y^2\right)+1\)
\(\Leftrightarrow x^2+y^2+1+2xy+2y+2x=3x^2+3y^2+1\)
\(\Leftrightarrow-\left(x-1\right)^2-\left(y-1\right)^2=\left(x-y\right)^2-2\le0\)
\(\Leftrightarrow-\sqrt{2}\le x-y\le\sqrt{2}\) --> ...
b) \(\left(2x-y-2\right)^2=7\left(x-2y-y^2-1\right)\)
\(\Leftrightarrow4x^2+y^2+4-4xy+4y-4x=7x-14y-7y^2-7\)
\(\Leftrightarrow2x^2-4xy+2y^2+2x^2-11x+\dfrac{121}{16}+6y^2+18y+\dfrac{9}{4}=\dfrac{-19}{16}\left(vl\right)\)
câu c tương tự .
xin câu b,
giải pt
\(4x^2-x\left(15+4y\right)+8y^2+18y+11=0\)
\(\Delta=\left(15+4y\right)^2-4.4.\left(8y^2+18y+11\right)=-112y^2-168y+49\ge0\)
\(\Rightarrow\left(y+\dfrac{3}{4}\right)^2\le1\)
\(\Rightarrow-\dfrac{7}{4}\le y\le\dfrac{1}{4}\)
vậy y=0 hoặc bằng -1
thay vào tìm x
Slot,cho t slot,thằng nào động vào t chém =))