Phân thức đại số

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Juvia Lockser

Cho biểu thức \(A=\dfrac{\left(x^2+y\right)\left(y+\dfrac{1}{4}\right)+x^2y^2+\dfrac{3}{4}\left(y+\dfrac{1}{3}\right)}{x^2y^2+1+\left(x^2-y\right)\left(1-y\right)}\)

a) CMR: Biểu thức A không phụ thuộc vào biến \(x\) ?

b) Tìm Min A ?

Nguyễn Lê Phước Thịnh
3 tháng 12 2022 lúc 23:19

a: \(B=\left(x^2+y\right)\left(y+\dfrac{1}{4}\right)+x^2y^2+\dfrac{3}{4}\left(y+\dfrac{1}{3}\right)\)

\(=x^2y+\dfrac{1}{4}x^2+y^2+\dfrac{1}{4}y+x^2y^2+\dfrac{3}{4}y+\dfrac{1}{4}\)

\(=x^2y+x^2y^2+y^2+y+\dfrac{1}{4}x^2+\dfrac{1}{4}\)

\(=y\left(x^2+1\right)+y^2\left(x^2+1\right)+\dfrac{1}{4}\left(x^2+1\right)\)

\(=\left(x^2+1\right)\left(y+\dfrac{1}{2}\right)^2\)

\(C=x^2y^2+1+\left(x^2-y\right)\left(1-y\right)\)

\(=x^2y^2+1+x^2-x^2y-y+y^2\)

\(=x^2y^2-y+x^2+y^2-x^2y+1\)

\(=y^2\left(x^2+1\right)-y\left(x^2+1\right)+x^2+1\)

\(=\left(x^2+1\right)\left(y^2-y+1\right)\)

=>\(A=\dfrac{y^2+y+\dfrac{1}{4}}{y^2-y+1}\)

b: \(=\dfrac{y^2-y+1+2y-\dfrac{3}{4}}{y^2-y+1}=1+\dfrac{2y-\dfrac{3}{4}}{y^2-y+1}>=1\)

Dấu = xảy ra khi y=3/8

 


Các câu hỏi tương tự
Phạm Băng Băng
Xem chi tiết
Phạm Băng Băng
Xem chi tiết
Phạm Băng Băng
Xem chi tiết
Trần Quang Minh
Xem chi tiết
JulyRin
Xem chi tiết
Kitana
Xem chi tiết
Nguyen Thi Ngoc Lan
Xem chi tiết
Hải Ngân
Xem chi tiết
Lyly Luta
Xem chi tiết