Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{x}{4}=\dfrac{y}{6}=\dfrac{z}{15}=\dfrac{x+3y-5z}{4+3\cdot6-5\cdot15}=\dfrac{-106}{-53}=2\)
Do đó: x=8; y=12; z=30
Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{x}{4}=\dfrac{y}{6}=\dfrac{z}{15}=\dfrac{x+3y-5z}{4+3\cdot6-5\cdot15}=\dfrac{-106}{-53}=2\)
Do đó: x=8; y=12; z=30
\(2x=3y;4y=5z\) và \(2x+3y-4z=56\)
\(\dfrac{x}{3}=\dfrac{y}{7};\dfrac{y}{2}=\dfrac{z}{5}\) và x + y + z = \(-10\)
Tìm x,y,z biết:
a, \(\dfrac{2x}{3}=\dfrac{3y}{4}=\dfrac{4z}{5}\) và x+y+z=49
b, \(\dfrac{x}{2}=\dfrac{y}{3}=\dfrac{z}{4}và\) xyz =810
c, \(\dfrac{x+1}{3}=\dfrac{y+2}{4}=\dfrac{z+3}{5}\) và 2x-3y+5z=100
Tìm x, y, z biết:
a, \(\dfrac{y + x + 1}{x} = \dfrac{x + z + 1}{x} = \dfrac{x + z + 2}{y} = \dfrac{x + y - 3}{z} = \dfrac{1}{x + y +z}\)
b, \(\dfrac{2x +3y}{4} = \dfrac{4y +- 3z}{5} = \dfrac{8x + 5z}{3}\) và x + y + z = 1
Tìm các số x,y,z biết rằng:
a) 3x = 2y : 7y = 5z và x-y+z=32
b)\(\dfrac{x}{3}=\dfrac{y}{4}\); \(\dfrac{y}{3}=\dfrac{z}{5}\) và 2x - 3y + z = 6
c)\(\dfrac{2x}{3}=\dfrac{3y}{4}=\dfrac{4z}{5}\) và x + y + z = 49
d) \(\dfrac{x-1}{2}=\dfrac{y-2}{3}=\dfrac{z-3}{4}\) và 2x + 3y - z = 50
e)\(\dfrac{x}{2}=\dfrac{y}{3}=\dfrac{z}{5}\) và xyz = 810
Tìm x,y,z biết
a) 3x=2y,7y=5z và x +y+z =92
b) 2x=3y=5z và x+y-z=95
d) x:y:z=3:4:5 và 2x2+2y2-3z2=-100
e) \(\dfrac{x+1}{3}=\dfrac{y+2}{4}=\dfrac{z-1}{5}\) và x+y-z=50
g) \(\dfrac{x+y}{7}=\dfrac{x-y}{3}\)và x.y = 250
Cho \(\dfrac{x}{y}=\dfrac{3}{4};\dfrac{y}{z}=\dfrac{5}{6}\) (x ;y ;z khác 0) . Tính giá trị biểu thức \(A=\dfrac{2x+3y+5z}{y+5z}\)
Tìm x, y, z trong ác trường hợp sau:
a) 2x = 3y = 5z và | x - 2y | =5;
b) 5x = 2y, 2x = 3z và xy = 90;
c) \(\dfrac{y+z+1}{x}=\dfrac{x+z+2}{y}=\dfrac{x+y-3}{z}=\dfrac{1}{x+y+z}\)
\(cho\dfrac{x}{-4}=\dfrac{y}{-7}=\dfrac{z}{3}\)tính giá trị biểu thức của A\(=\dfrac{-2x+y+5z}{2x-3y-6z}\)(với x,y,z\(\ne0\)và a+b+c=0)
bài 1: \(\dfrac{x-1}{2}\) =\(\dfrac{y+3}{4}\) =\(\dfrac{z-5}{4}\) và 5z -3x -4y = 50
giúp với