Ôn thi vào 10

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Linh Bùi

\(\sqrt{x^2-1}+\sqrt{x^2-2x+1}=0\)

Giải PT

Trần Ái Linh
2 tháng 6 2021 lúc 11:20

ĐK: `x<=-1 ; x>= 1`

`\sqrt(x^2-1)+\sqrt(x^2-2x+1)=0`

`<=> \sqrt((x-1)(x+1)) + \sqrt((x-1)^2)=0`

`<=> \sqrt(x-1) (\sqrt(x+1) + \sqrt(x-1))=0`

\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{x-1}=0\\\sqrt{x+1}+\sqrt{x-1}=0\left(VN\right)\end{matrix}\right.\\ \Leftrightarrow x=1\)

Vậy `S={1}`.

Đặng Khánh
2 tháng 6 2021 lúc 15:09

ĐKXĐ : \(\left[{}\begin{matrix}x\ge1\\x\le-1\end{matrix}\right.\)

\(\sqrt{x^2-1}+\sqrt{x^2-2x+1}=0\)\(\)

\(\)\(\Leftrightarrow\left\{{}\begin{matrix}x^2-1=0\\x^2-2x+1=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x^2=1\\\left(x-1\right)^2=0\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}x=\pm1\\x=1\end{matrix}\right.\)\(\)

\(\Leftrightarrow x=1\)

Vậy S = {1}

 


Các câu hỏi tương tự
Gay\
Xem chi tiết
Hug Hug - 3 cục bánh bao...
Xem chi tiết
Hug Hug - 3 cục bánh bao...
Xem chi tiết
DTD2006ok
Xem chi tiết
Uchiha Itachi
Xem chi tiết
Anh Quynh
Xem chi tiết
đặng thị thu thủy
Xem chi tiết
Aurora
Xem chi tiết
Anh Quynh
Xem chi tiết