ĐK: `x<=-1 ; x>= 1`
`\sqrt(x^2-1)+\sqrt(x^2-2x+1)=0`
`<=> \sqrt((x-1)(x+1)) + \sqrt((x-1)^2)=0`
`<=> \sqrt(x-1) (\sqrt(x+1) + \sqrt(x-1))=0`
\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{x-1}=0\\\sqrt{x+1}+\sqrt{x-1}=0\left(VN\right)\end{matrix}\right.\\ \Leftrightarrow x=1\)
Vậy `S={1}`.
ĐKXĐ : \(\left[{}\begin{matrix}x\ge1\\x\le-1\end{matrix}\right.\)
\(\sqrt{x^2-1}+\sqrt{x^2-2x+1}=0\)\(\)
\(\)\(\Leftrightarrow\left\{{}\begin{matrix}x^2-1=0\\x^2-2x+1=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x^2=1\\\left(x-1\right)^2=0\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}x=\pm1\\x=1\end{matrix}\right.\)\(\)
\(\Leftrightarrow x=1\)
Vậy S = {1}