`x^2+\sqrt{2x+1}+sqrt{x-3}=5x`
Bài này dùng pp liên hợp với đk của x là `x>=3`
`pt<=>x^2-16+\sqrt{2x+1}-3+\sqrt{x-3}-1=5x-20`
`<=>(x-4)(x+4)+(2x-8)/(\sqrt{2x+1}+3)+(x-4)/(\sqrt{x-3}+1)=5(x-4)`
`<=>(x-4)(x+4+2/(\sqrt{2x+1}+3)+1/(\sqrt{x-3}+1)-5)=0`
`<=>(x-4)(x-1+2/(\sqrt{2x+1}+3)+1/(\sqrt{x-3}+1))=0`
Vì `x>=3=>x-1>=2>0`
Mà `2/(\sqrt{2x+1}+3)+1/(\sqrt{x-3}+1)>0`
`=>x-1+2/(\sqrt{2x+1}+3)+1/(\sqrt{x-3}+1)>0`
`=>x-4=0<=>x=4(tm)`
Vậy `S={4}`