Ôn thi vào 10

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Aurora

giải pt \(\sqrt{x}+\sqrt{3x-2}=x^2+1\)

Akai Haruma
23 tháng 5 2021 lúc 16:50

Lời giải:

ĐK: $x\geq \frac{2}{3}$

PT \(\sqrt{x}-1+\sqrt{3x-2}=x^2-1\)

\(\Leftrightarrow \frac{x-1}{\sqrt{x}+1}+\frac{3(x-1)}{\sqrt{3x-2}+1}=(x-1)(x+1)\)

\(\Leftrightarrow (x-1)\left[x+1-\frac{1}{\sqrt{x}+1}-\frac{3}{\sqrt{3x-2}+1}\right]=0\)

\(\Leftrightarrow (x-1)\left[(x-1)-(\frac{1}{\sqrt{x}+1}-\frac{1}{2})-(\frac{3}{\sqrt{3x-2}+1}-\frac{3}{2})\right]=0\)

\(\Leftrightarrow (x-1)\left[(x-1)+\frac{x-1}{2(\sqrt{x}+1)^2}+\frac{9(x-1)}{2(\sqrt{3x-2}+1)^2}\right]=0\)

\(\Leftrightarrow (x-1)^2\left[1+\frac{1}{2(\sqrt{x}+1)^2}+\frac{9}{2(\sqrt{3x-2}+1)^2}\right]=0\)

Dễ thấy biểu thức trong ngoặc vuông dương, nên $(x-1)^2=0$

$\Rightarrow x=1$ (tm)

Vậy......


Các câu hỏi tương tự
Hug Hug - 3 cục bánh bao...
Xem chi tiết
Hug Hug - 3 cục bánh bao...
Xem chi tiết
Hug Hug - 3 cục bánh bao...
Xem chi tiết
Linh Bùi
Xem chi tiết
Uchiha Itachi
Xem chi tiết
Phạm Trần Phát
Xem chi tiết
Vũ Đình Thái
Xem chi tiết
DTD2006ok
Xem chi tiết
Tamduc
Xem chi tiết