ĐK: \(-2\le x\le4\)
Đặt \(\sqrt{-x^2+2x+8}=t\left(0\le t\le3\right)\)
\(\sqrt{\left(x+2\right)\left(4-x\right)}\le x^2-2x+m\)
\(\Leftrightarrow-x^2+2x+8+\sqrt{-x^2+2x+8}-8\le m\)
\(\Leftrightarrow m\ge f\left(t\right)=t^2+t-8\)
Yêu cầu bài toán thỏa mãn khi \(m\ge maxf\left(t\right)=f\left(4\right)=12\)
Kết luận: \(m\ge12\)