Violympic toán 9

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Dương Thị Thu Ngọc

\(\sqrt{5+x-4\sqrt{x+1}}+\sqrt{10+x-6\sqrt{x+1}}=1\) .giải pt trên.

Akai Haruma
23 tháng 12 2019 lúc 10:44

Lời giải:
ĐKXĐ: \(x\geq -1\)

\(PT\Leftrightarrow \sqrt{(x+1)-4\sqrt{x+1}+4}+\sqrt{(x+1)-6\sqrt{x+1}+9}=1\)

\(\Leftrightarrow \sqrt{(\sqrt{x+1}-2)^2}+\sqrt{(\sqrt{x+1}-3)^2}=1\)

\(\Leftrightarrow |\sqrt{x+1}-2|+|3-\sqrt{x+1}|=1\)

Áp dụng BĐT dạng $|a|+|b|\ge |a+b|$ ta có:

$|\sqrt{x+1}-2|+|3-\sqrt{x+1}|\geq |\sqrt{x+1}-2+3-\sqrt{x+1}|=1$

Dấu "=" xảy ra khi $(\sqrt{x+1}-2)(3-\sqrt{x+1})\geq 0$

$\Leftrightarrow 2\leq \sqrt{x+1}\leq 3$

$\Leftrightarrow 3\leq x\leq 8$

Vậy.........

Khách vãng lai đã xóa
Akai Haruma
3 tháng 1 2020 lúc 0:00

Lời giải:
ĐKXĐ: \(x\geq -1\)

\(PT\Leftrightarrow \sqrt{(x+1)-4\sqrt{x+1}+4}+\sqrt{(x+1)-6\sqrt{x+1}+9}=1\)

\(\Leftrightarrow \sqrt{(\sqrt{x+1}-2)^2}+\sqrt{(\sqrt{x+1}-3)^2}=1\)

\(\Leftrightarrow |\sqrt{x+1}-2|+|3-\sqrt{x+1}|=1\)

Áp dụng BĐT dạng $|a|+|b|\ge |a+b|$ ta có:

$|\sqrt{x+1}-2|+|3-\sqrt{x+1}|\geq |\sqrt{x+1}-2+3-\sqrt{x+1}|=1$

Dấu "=" xảy ra khi $(\sqrt{x+1}-2)(3-\sqrt{x+1})\geq 0$

$\Leftrightarrow 2\leq \sqrt{x+1}\leq 3$

$\Leftrightarrow 3\leq x\leq 8$

Vậy.........

Khách vãng lai đã xóa

Các câu hỏi tương tự
Phạm Linh
Xem chi tiết
NGUYỄN MINH TÀI
Xem chi tiết
Ninh Dương An Nhiên
Xem chi tiết
Tứ Diệp Thảo
Xem chi tiết
Big City Boy
Xem chi tiết
Phạm Băng Băng
Xem chi tiết
Big City Boy
Xem chi tiết
Mai Tiến Đỗ
Xem chi tiết
Thiều Khánh Vi
Xem chi tiết