Lời giải:
ĐKXĐ: \(x\geq -1\)
\(PT\Leftrightarrow \sqrt{(x+1)-4\sqrt{x+1}+4}+\sqrt{(x+1)-6\sqrt{x+1}+9}=1\)
\(\Leftrightarrow \sqrt{(\sqrt{x+1}-2)^2}+\sqrt{(\sqrt{x+1}-3)^2}=1\)
\(\Leftrightarrow |\sqrt{x+1}-2|+|3-\sqrt{x+1}|=1\)
Áp dụng BĐT dạng $|a|+|b|\ge |a+b|$ ta có:
$|\sqrt{x+1}-2|+|3-\sqrt{x+1}|\geq |\sqrt{x+1}-2+3-\sqrt{x+1}|=1$
Dấu "=" xảy ra khi $(\sqrt{x+1}-2)(3-\sqrt{x+1})\geq 0$
$\Leftrightarrow 2\leq \sqrt{x+1}\leq 3$
$\Leftrightarrow 3\leq x\leq 8$
Vậy.........
Lời giải:
ĐKXĐ: \(x\geq -1\)
\(PT\Leftrightarrow \sqrt{(x+1)-4\sqrt{x+1}+4}+\sqrt{(x+1)-6\sqrt{x+1}+9}=1\)
\(\Leftrightarrow \sqrt{(\sqrt{x+1}-2)^2}+\sqrt{(\sqrt{x+1}-3)^2}=1\)
\(\Leftrightarrow |\sqrt{x+1}-2|+|3-\sqrt{x+1}|=1\)
Áp dụng BĐT dạng $|a|+|b|\ge |a+b|$ ta có:
$|\sqrt{x+1}-2|+|3-\sqrt{x+1}|\geq |\sqrt{x+1}-2+3-\sqrt{x+1}|=1$
Dấu "=" xảy ra khi $(\sqrt{x+1}-2)(3-\sqrt{x+1})\geq 0$
$\Leftrightarrow 2\leq \sqrt{x+1}\leq 3$
$\Leftrightarrow 3\leq x\leq 8$
Vậy.........