Giải các PT sau:
a)\(\sqrt{x+2+3\sqrt{2x-5}}+\sqrt{x-2-\sqrt{2x-5}}=2\sqrt{2}\)
b)\(\sqrt{x-\sqrt{4x-4}}+\sqrt{x+\sqrt{4x-4}}=2\)
Giải pt:
a. \(x-\sqrt{x^4-2x^2+1}=1\)
b. \(\sqrt{x^2+4x+4}+|x-4|=0\)
c. \(\sqrt{x-2}+\sqrt{x-3}=-5\)
d. \(\sqrt{x^2-2x+1}+\sqrt{x^2-6x+9}=1\)
e. \(\sqrt{x+5}+\sqrt{2-x}=x^2-25\)
g.\(\sqrt{x+3-4\sqrt{x-1}}+\sqrt{x+8-6\sqrt{x-1}}=1\)
h. \(\sqrt{8x+1}+\sqrt{3x-5}=\sqrt{7x+4}+\sqrt{2x-2}\)
Giải phương trình:
\(a)\sqrt{x^2+2x+4}\ge x-2\\ b)x=\sqrt{x-\frac{1}{x}}+\sqrt{x+\frac{1}{x}}\\ c)\sqrt{x+2+3\sqrt{2x-5}}+\sqrt{x-2\sqrt{2x-5}}\\ d)x+y+z+4=2\sqrt{x-2}+4\sqrt{y-3}+6\sqrt{z-5}\\ e)\sqrt{x}+\sqrt{y-1}+\sqrt{z-2}=\frac{1}{2}\left(x+y+z\right)\)
a. \(\sqrt{1-2x}=x+7\)
b.\(\sqrt{1+x^2}=2x-1\)
c.\(\sqrt{1-x}-\sqrt{2+x}=1\)
d. \(\sqrt{1-x}+\sqrt{4+x}=3\)
e. \(\left|2x+5\right|\)= x-1
f. \(\left|x\right|+\left|2x-1\right|=x+2\)
g.\(\left|x-9\right|^{10}+\left|x-10\right|^{10}=1\)
h. \(\left|x-2014\right|^{2015}+\left|x-2015\right|^{2014}=1\)
i. \(\sqrt{x+3+4\sqrt{x-1}}+\sqrt{x+8-6\sqrt{x-1}}=5\)
k. \(\sqrt{x+2\sqrt{x-1}}+\sqrt{x-2\sqrt{x-1}}=x-1\)
l. \(\sqrt{x+2-4\sqrt{x-2}}+\sqrt{x+7-6\sqrt{x-2}}=1\)
m. \(\sqrt{x+8+2\sqrt{x+7}}+\sqrt{x-1-2\sqrt{x+7}}=4\)
m. \(x+\sqrt{x+\frac{1}{4}+\sqrt{x+\frac{1}{4}}}=\frac{9}{4}\)
n.\(\left(x+5\right)^4+\left(x+7\right)^4=2\)
Giải pt
Giair cacs pt sau:
a. \(x-\sqrt{x^4-2x^2+1}=1\)
b. \(\sqrt{x-2}+\sqrt{x-3}=-5\)
c. \(\sqrt{x^2-2x+1}+\sqrt{x^2-6x+9}=1\)
d. \(\sqrt{x+5}+\sqrt{2-x}=x^2-25\)
e. \(\sqrt{x+3-4\sqrt{x-1}}+\sqrt{x+8-6\sqrt{x-1}}=1\)
f. \(\sqrt{8x+1}+\sqrt{3x-5}=\sqrt{7x+4}+\sqrt{2x-2}\)
giải pt :
a) \(\sqrt{x-1}+\sqrt{x^3+x^2+x+1}=1+\sqrt{x^4-1}\)
b0 \(4\sqrt{x+1}=x^2-5x+14\)
c) \(2x+3\sqrt{4-5x}+\sqrt{x+2}=8\)
d) \(\dfrac{x^2+x}{\sqrt{x^2+x+1}}=\dfrac{2-x}{\sqrt{x-1}}\)
Giải các PT sau: \(\sqrt{x+6-4\sqrt{x+2}}-\sqrt{9-4\sqrt{5}}=0\)
bài 1: giải pt
a. \(\sqrt{x-1}+\sqrt{2x-1}=5\)
b. \(x+\sqrt{2x-1}-2=0\)
bài 2: tính
A=\(\sqrt{7-4\sqrt{3}}-\sqrt{7+4\sqrt{3}}\)
B=\(\sqrt{15-6\sqrt{6}}+\sqrt{33-12\sqrt{6}}\)
C=\(\left(\frac{1}{3-\sqrt{5}}-\frac{1}{3+\sqrt{5}}\right)\).\(\frac{\sqrt{5}-1}{5-\sqrt{5}}\)
Giải các phương trình sau:
1.
a. \(\sqrt{x+3}-\sqrt{x-4}=1\)
b. \(\sqrt{10-x}+\sqrt{x+3}=5\)
c. \(\sqrt{15-x}+\sqrt{3-x}=6\)
d. \(\sqrt{x-1}+\sqrt{x+1}=2\)
e. \(\sqrt{4x+1}-\sqrt{3x+4}=1\)
f. \(\sqrt{x-2\sqrt{x-1}}-\sqrt{x-1}=1\)
g. \(\sqrt{x+\sqrt{2x+1}}+\sqrt{x-\sqrt{2x-1}}=\sqrt{2}\)
h. \(\sqrt{x+\sqrt{6x-9}}+\sqrt{x-\sqrt{6x-9}}=\sqrt{6}\)
i. \(\sqrt{x^2-4x+4}+\sqrt{x^2-6x+9}=1\)
k. \(\sqrt{x+4-4\sqrt{x}}+\sqrt{x+9-6\sqrt{x}}=1\)
l. \(\sqrt{x+6-4\sqrt{x+2}}+\sqrt{x+11-6\sqrt{x+2}}=1\)
m. \(\sqrt{x+2-4\sqrt{x-2}}+\sqrt{x+7-6\sqrt{x-2}=1}\)
n. \(\sqrt{x}+\sqrt{x+\sqrt{1-x}}=1\)
o. \(\sqrt{1-\sqrt{x^2-x}}=\sqrt{x}-1\)
p. \(\sqrt{x^2+6}=x-2\sqrt{x^2-1}\)
q. \(\sqrt{2x^2+8x+6}+\sqrt{x^2-1}=2x+2\)
r. \(\sqrt{x-7}+\sqrt{9-x}=x^2-16x+66\)
s. \(\sqrt{2x-1}+\sqrt{x-2}=\sqrt{x+1}\)
t. \(\sqrt{3x+15}-\sqrt{4x-17}=\sqrt{x+2}\)
u. \(\sqrt{x-1}+\sqrt{x+3}+2\sqrt{\left(x-1\right)\left(x^2-3x+5\right)}=4-2x\)
v. \(\sqrt{x+1}+\sqrt{x+10}=\sqrt{x+2}+\sqrt{x+5}\)
w. \(\sqrt{2x+3+\sqrt{x+2}}+\sqrt{2x+2-\sqrt{x+2}}=1+2\sqrt{x+2}\)
x. \(\sqrt{2x^2-9x+4}+3\sqrt{2x-1}=\sqrt{2x^2+21x-11}\)
y. \(\sqrt{1-x}+\sqrt{x^2-3x+2}+\left(x-2\right)\sqrt{\dfrac{x-1}{x-2}}=3\)
z. \(\left(x-2\right)\left(x+2\right)+4\left(x-2\right)\sqrt{\dfrac{x+2}{x-2}}=-3\)
2.
a. \(\dfrac{2+\sqrt{x}}{\sqrt{2}+\sqrt{2+\sqrt{x}}}+\dfrac{2-\sqrt{x}}{\sqrt{2}-\sqrt{2-\sqrt{x}}}=\sqrt{2}\)
b. \(\dfrac{x}{2+\dfrac{x}{2+\dfrac{x}{2+\dfrac{...}{2+\dfrac{x}{1+\sqrt{1+x}}}}}}=8\) (vế trái có 100 dấu phân thức)
c. \(\sqrt[3]{x+1}+\sqrt[3]{7-x}=2\)
d. \(\sqrt[4]{1-x}+\sqrt[4]{2-x}=\sqrt[4]{3-2x}\)
e. \(\sqrt[4]{1-x^2}+\sqrt[4]{1+x}+\sqrt[4]{1-x}=3\)
f. \(\dfrac{\sqrt[3]{7-x}-\sqrt[3]{x-5}}{\sqrt[3]{7-x}+\sqrt[3]{x-5}}=6-x\)
g. \(\sqrt[3]{x+1}+\sqrt[3]{x+2}+\sqrt[3]{x+3}=0\)
h. \(\sqrt[3]{\left(x+1\right)^2}+\sqrt[3]{\left(x-1\right)^2}+\sqrt[3]{x^2-1}=1\)
i. \(\sqrt[3]{x+1}+\sqrt[3]{x-1}=\sqrt[3]{5x}\)
k. \(\sqrt[3]{x-2}+\sqrt{x+1}=3\)
l. \(\sqrt[3]{24+x}+\sqrt{12-x}=6\)
m. \(\sqrt[3]{2-x}+\sqrt{x-1}=1\)
n. \(1+\sqrt[3]{x-16}=\sqrt[3]{x+3}\)
o. \(\sqrt[3]{25+x}+\sqrt[3]{3-x}=4\)
p. \(\sqrt[3]{x+3}-\sqrt[3]{6-x}=1\)
Làm nhanh giúp mk nhé mn ơi