Bài 1:
a/ ĐKXĐ: \(x\ge1\)
\(\Leftrightarrow\sqrt{x-1}-2+\sqrt{2x-1}-3=0\)
\(\Leftrightarrow\frac{x-5}{\sqrt{x-1}+2}+\frac{2\left(x-5\right)}{\sqrt{2x-1}+3}=0\)
\(\Leftrightarrow\left(x-5\right)\left(\frac{1}{\sqrt{x-1}+2}+\frac{2}{\sqrt{2x-1}+3}\right)=0\)
\(\Rightarrow x=5\)
b/ĐKXĐ:...
\(x-1+\sqrt{2x-1}-1=0\)
\(\Leftrightarrow x-1+\frac{2\left(x-1\right)}{\sqrt{2x-1}+1}=0\)
\(\Leftrightarrow\left(x-1\right)\left(1+\frac{2}{\sqrt{2x-1}+1}\right)=0\)
\(\Rightarrow x=1\)
Bài 2:
\(A=\sqrt{\left(2-\sqrt{3}\right)^2}-\sqrt{\left(2+\sqrt{3}\right)^2}\)
\(=\left|2-\sqrt{3}\right|-\left|2+\sqrt{3}\right|\)
\(=2-\sqrt{3}-2-\sqrt{3}=-2\sqrt{3}\)
\(B=\sqrt{\left(3-\sqrt{6}\right)^2}+\sqrt{\left(2\sqrt{6}-3\right)^2}\)
\(=\left(3-\sqrt{6}\right)+\left(2\sqrt{6}-3\right)\)
\(=\sqrt{6}\)
\(C=\left(\frac{3+\sqrt{5}-3+\sqrt{5}}{\left(3-\sqrt{5}\right)\left(3+\sqrt{5}\right)}\right).\frac{\left(\sqrt{5}-1\right)}{\sqrt{5}\left(\sqrt{5}-1\right)}\)
\(=\frac{2\sqrt{5}}{4}.\frac{1}{\sqrt{5}}=\frac{1}{2}\)