Chương 3: PHƯƠNG TRÌNH, HỆ PHƯƠNG TRÌNH

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Phạm Tùng Dương

\(\sqrt[3]{\frac{a^4}{b^4}}+\sqrt[3]{\frac{b^4}{c^4}}+\sqrt[3]{\frac{c^4}{a^4}}\ge\frac{a}{b}+\frac{b}{c}+\frac{c}{a}\)

Akai Haruma
30 tháng 1 2020 lúc 23:22

Lời giải:

Áp dụng BĐT AM-GM:

\(\sqrt[3]{\frac{a^4}{b^4}}+\sqrt[3]{\frac{a^4}{b^4}}+\sqrt[3]{\frac{a^4}{b^4}}+\frac{a}{b}+1\geq \frac{5a}{b}\)

\(\sqrt[3]{\frac{b^4}{c^4}}+\sqrt[3]{\frac{b^4}{c^4}}+\sqrt[3]{\frac{b^4}{c^4}}+\frac{b}{c}+1\geq \frac{5b}{c}\)

\(\sqrt[3]{\frac{c^4}{a^4}}+\sqrt[3]{\frac{c^4}{a^4}}+\sqrt[3]{\frac{c^4}{a^4}}+\frac{c}{a}+1\geq \frac{5c}{a}\)

Cộng theo vế và rút gọn:

\(3\text{VT}\geq 4\text{VP}-3\)

Mà theo BĐT AM-GM: \(\text{VP}=\frac{a}{b}+\frac{b}{c}+\frac{c}{a}\geq 3\)

Do đó:

$3\text{VT}\geq 4\text{VP}-3\geq 3\text{VP}$

$\Rightarrow \text{VT}\geq \text{VP}$ (đpcm)

Dấu "=" xảy ra khi $a=b=c$

Khách vãng lai đã xóa
tthnew
31 tháng 1 2020 lúc 7:37

Cách khác:

Đặt \(\sqrt[3]{\frac{a}{b}}=x;\sqrt[3]{\frac{b}{c}}=y;\sqrt[3]{\frac{c}{a}}=z\Rightarrow xyz=1,x>0,y>0,z>0\) (mục đích là khử căn)

Cần chứng minh: \(x^4+y^4+z^4\ge x^3+y^3+z^3\Leftrightarrow x^4+y^4+z^4\ge\sqrt[3]{xyz}\left(x^3+y^3+z^3\right)\)

Do \(\sqrt[3]{xyz}\le\frac{x+y+z}{3}\). Vì vậy, nó đủ để chứng minh rằng:

\(3\left(x^4+y^4+z^4\right)\ge\left(x+y+z\right)\left(x^3+y^3+z^3\right)\)

Đến đây có nhiều hướng giải, sau đây là một vài hướng:

Hướng 1:

Sử dụng BĐT C-S:

\(3\left(x^4+y^4+z^4\right)=3\left(\frac{x^6}{x^2}+\frac{y^6}{y^2}+\frac{z^6}{z^2}\right)\ge\frac{3\left(x^3+y^3+z^3\right)^2}{x^2+y^2+z^2}\)

\(=\frac{3\left(x^3+y^3+z^3\right)\left(\frac{x^4}{x}+\frac{y^4}{y}+\frac{z^4}{z}\right)}{x^2+y^2+z^2}\ge\frac{\frac{3\left(x^3+y^3+z^3\right)\left(x^2+y^2+z^2\right)^2}{x+y+z}}{x^2+y^2+z^2}\)

\(=\frac{3\left(x^3+y^3+z^3\right)\left(x^2+y^2+z^2\right)}{x+y+z}\ge\left(x^3+y^3+z^3\right)\left(x+y+z\right)\)

Hướng 2:(Dùng SOS)

\(VT-VP=\sum\limits_{cyc} (x^2 +xy+y^2)(x-y)^2 \geq 0\)

Hướng 3: (Dùng S-S)

Giả sử \(z=min\left\{x,y,z\right\}\).

\(VT-VP=2\left(x^2+xy+y^2\right)\left(x-y\right)^2+\left(x-z\right)\left(y-z\right)\left(x^2+xz+y^2+yz+2z^2\right)\ge0\)

Đẳng thức xảy ra khi \(x=y=z=1\Leftrightarrow a=b=c\)

P/s:@Akai Haruma: Em nghĩ hướng này sẽ dễ suy luận hơn cách ghép cặp bằng AM-GM ạ! Cách kia hơi ảo diệu.

Khách vãng lai đã xóa

Các câu hỏi tương tự
Nguyễn Thu Ngà
Xem chi tiết
Julian Edward
Xem chi tiết
Julian Edward
Xem chi tiết
dbrby
Xem chi tiết
Trần Minh Ngọc
Xem chi tiết
ank viet
Xem chi tiết
ank viet
Xem chi tiết
dbrby
Xem chi tiết
Julian Edward
Xem chi tiết