\(8+\sqrt{5}=8+\sqrt{\frac{12500}{2500}}>8+\sqrt{\frac{12321}{2500}}=\frac{511}{50}\)
\(3+2\sqrt{13}=3+2\sqrt{\frac{130000}{10000}}< 3+2\sqrt{\frac{130321}{10000}}=\frac{511}{50}\)
\(\Rightarrow8+\sqrt{5}>3+2\sqrt{13}\)
\(8+\sqrt{5}=8+\sqrt{\frac{12500}{2500}}>8+\sqrt{\frac{12321}{2500}}=\frac{511}{50}\)
\(3+2\sqrt{13}=3+2\sqrt{\frac{130000}{10000}}< 3+2\sqrt{\frac{130321}{10000}}=\frac{511}{50}\)
\(\Rightarrow8+\sqrt{5}>3+2\sqrt{13}\)
so sánh
\(\sqrt{2}+\sqrt{3}\) và 2
\(\sqrt{8}+\sqrt{5}\) và \(\sqrt{7}-\sqrt{6}\)
SO SÁNH :
\(\sqrt{2}+\sqrt{11}\) và \(\sqrt{3}+5\)
So sánh : \(\dfrac{\sqrt{5}+1}{5\sqrt{10-2\sqrt{5}}}\) và \(\dfrac{\sqrt{3}}{6}\)
so sánh
\(a.3\sqrt{26}\) và 15
\(b.-5\sqrt{35}\) và 30
c.\(\sqrt{34-10\sqrt{3}}\) và 5-\(\sqrt{3}\)
d.\(\sqrt{16+225}\) và \(\sqrt{16}+\sqrt{225}\)
Rút gọn biểu thức:
a) \(\dfrac{\sqrt{9-2\sqrt{6}}-\sqrt{6}}{\sqrt{3}}\) b)\(\dfrac{5+\sqrt{5}}{5-\sqrt{5}}+\dfrac{5-\sqrt{5}}{5+\sqrt{5}}\)
c) \(\sqrt{13+30\sqrt{2+\sqrt{9+4\sqrt{2}}}}\) d) \(\sqrt{8+2\sqrt{10+2\sqrt{5}}}+\sqrt{8-2\sqrt{10+2\sqrt{5}}}\)
e) \(\dfrac{2\sqrt{3+\sqrt{5-\sqrt{13+\sqrt{48}}}}}{\sqrt{6}-\sqrt{2}}\) f) \(\sqrt{9-\sqrt{5\sqrt{3}+5\sqrt{8+10\sqrt{7-4\sqrt{3}}}}}\)
rút gọn biểu thức
a) \(\left(\sqrt{7}-\sqrt{2}\right).\left(\sqrt{9+2\sqrt{14}}\right)\)
b) \(\sqrt{\sqrt{13}-\sqrt{3-\sqrt{13}}-4\sqrt{3}}\)
c) \(\sqrt{80-\sqrt{321-16\sqrt{5}}-\sqrt{226-80\sqrt{5}-\sqrt{89-25\sqrt{5}}}}\)
d) \(\dfrac{1}{\sqrt{8}+\sqrt{7}}+\sqrt{175}-\dfrac{6\sqrt{2}-4}{3-\sqrt{2}}\)
e) \(\dfrac{\sqrt{6-\sqrt{11}}}{\sqrt{22}-\sqrt{2}}+\dfrac{6}{\sqrt{2}}-\dfrac{3}{\sqrt{2}+1}\)
f) \(\dfrac{\sqrt{2}}{2\sqrt{2}+\sqrt{3}+\sqrt{5}}+\dfrac{\sqrt{2}}{2\sqrt{2}-\sqrt{3}-\sqrt{5}}\)
g) \(\dfrac{\sqrt{2}+\sqrt{3}+\sqrt{6}+\sqrt{8}+4}{\sqrt{2}+\sqrt{3}+\sqrt{4}}\)
\(\sqrt{2x-2+2\sqrt{2x-3}}+\sqrt{2x+13+8\sqrt{2x-13}}=5\)
bài 1 So sánh
a) 1 và \(\sqrt{3}-1\)
b) 2\(\sqrt{31}\) và 10
c) \(\sqrt{15}-1\) và \(\sqrt{10}\)
So sánh A = 2\(\sqrt{1}+2\sqrt{3}+2\sqrt{5}+2\sqrt{7}+2\sqrt{9}+2\sqrt{11}+2\sqrt{13}+2\sqrt{15}+2\sqrt{17}+2\sqrt{19}\) và B = \(2\sqrt{2}+2\sqrt{4}+2\sqrt{6}+2\sqrt{8}+2\sqrt{10}+2\sqrt{12}+2\sqrt{14}+2\sqrt{16}+2\sqrt{18}+2\sqrt{20}\)