Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{a}{2}=\dfrac{b}{3}=\dfrac{c}{4}=\dfrac{b+c-a}{3+4-2}=\dfrac{120}{5}=24\)
Do đó: a=48; b=72; c=96
Gọi a,b,c lần lượt là số học sinh giỏi, khá, trung bình của khối 7 (a,b,c ∈ N*)
Theo đề bài, ta có :
\(\dfrac{a}{2}\)=\(\dfrac{b}{3}\)=\(\dfrac{c}{4}\) và b+c-a = 120(em)
Theo tính chất của dãy tỉ số bằng nhau, ta có :
\(\dfrac{a}{2}\) =\(\dfrac{b}{3}\)=\(\dfrac{c}{4}\)=\(\dfrac{b+c-a}{3+4_{ }-2}\)=\(\dfrac{120}{5}\)=24
Từ\(\dfrac{a}{2}\)= 24 => a = 24.2 = 48
Từ \(\dfrac{b}{3}\)= 24 => b = 24.3 = 72
Từ\(\dfrac{c}{4}\)= 24 => c = 24.4 = 96
Vậy số học sinh giỏi là : 48 em
học sinh khá là : 72 em
học sinh trung bình là : 96 em
\(\text{Gọi x;y;z lần lượt là số học sinh giỏi,khá,trung bình:}\)
(đk:x;y;z\(\in\)N*,đơn vị:học sinh)
\(\text{Ta có:}\dfrac{x}{2}=\dfrac{y}{3}=\dfrac{z}{4}\text{ và }z+y-z=120\)
\(\text{Áp dụng tính chất dãy tỉ số bằng nhau:}\)
\(\dfrac{x}{2}=\dfrac{y}{3}=\dfrac{z}{4}=\dfrac{z+y-x}{4+3-2}=\dfrac{120}{5}=24\)
\(\Rightarrow x=24.2=48\text{(học sinh)}\)
\(y=24.3=72\text{(học sinh)}\)
\(z=24.4=96\text{(học sinh)}\)
\(\text{Vậy số học sinh giỏi là:48 học sinh}\)
\(\text{học sinh khá là:72 học sinh}\)
\(\text{học sinh trung bình là:96 học sinh}\)