Lời giải:
\(A=x^{10}+20x^9+20x^8+...+20x^3+20x^2+20x\)
\(=x^{10}+21x^9+21x^8+....+21x^3+21x^2+21x-(x^9+x^8+...+x^3+x^2+x)\)
\(=x^{10}-x.x^9-x.x^8-...-x.x^3-x.x^3-x.x-(x^9+x^8+...+x^3+x^2+x)\)
\(=-(x^9+x^8+....+x^2)-(x^9+x^8+x^3+x^2+x)\)
\(=-2(x^2+x^3+...+x^9)-x\)
\(Ax=-2(x^3+x^4+...+x^{10})-x^2\)
\(Ax-A=-2(x^3+x^4+...+x^{10})-x^2+2(x^2+...+x^9)+x\)
\(A(x-1)=x^2+x-2x^{10}\)
\(A=\frac{x^2+x-2x^{10}}{x-1}=\frac{21^2-21-2.21^{10}}{-22}=\frac{21^{10}-210}{11}\)