a.
\(\left(a+b\right)(a^2-ab+b^2)+\left(a-b\right)\left(a^2+ab+b^2\right)\)
= \(a^3+b^3+a^3-b^3\)
= \(2a^3\)
b.
\(\left(a+b\right)\left[\left(a-b\right)^2+ab\right]\)
= \(\left(a+b\right)\left[a^2-2ab+b^2+ab\right]\)
= \(\left(a+b\right)\left[a^2-ab+b^2\right]\)
= \(a^3+b^3\)
a.=(a3+b3)+(a3-b3)
=a3+b3+a3-b3
=2a3
b.ta có:(a+b)[(a-b)2+ab]
=(a+b)(a2-2ab+b2+ab)
=(a+b)(a2-ab+b2)
=a3+b3