\(\left(\frac{1-y\sqrt{y}}{1-\sqrt{y}}+\sqrt{y}\right)\left(\frac{1-\sqrt{y}}{1-y}\right)^2\)
\(=\left(\frac{1-\sqrt{y}^3}{1-\sqrt{y}}+\sqrt{y}\right)\left(\frac{1-\sqrt{y}}{\left(1-\sqrt{y}\right)\left(1+\sqrt{y}\right)}\right)^2\)
\(=\left(\frac{\left(1-\sqrt{y}\right)\left(1+\sqrt{y}+y\right)}{1-\sqrt{y}}+\sqrt{y}\right)\left(\frac{1}{1+\sqrt{y}}\right)^2\)
\(\)\(=\left(1+\sqrt{y}+y+\sqrt{y}\right).\frac{1}{(1+\sqrt{y})^2}\)
\(=\left(1+2\sqrt{y}+y\right).\frac{1}{1+2\sqrt{y}+y}\)
\(=1\)
tth lần sau làm đi đừng để a mất niềm tin vào chú nữa ok